Heramb26's picture
Add application file
9206f14
raw
history blame
1.42 kB
import gradio as gr
import os
import torch
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
# Set up device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the fine-tuned model
checkpoint_path = './checkpoint-2070' # Path to your fine-tuned model checkpoint
model = VisionEncoderDecoderModel.from_pretrained(checkpoint_path).to(device)
# Use the original model's processor (tokenizer and feature extractor)
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
def ocr_image(image):
"""
Perform OCR on a single image.
:param image: PIL Image object.
:return: Extracted text from the image.
"""
pixel_values = processor(image, return_tensors='pt').pixel_values.to(device)
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
# Define the Gradio interface
interface = gr.Interface(
fn=ocr_image, # Function to call for prediction
inputs=gr.inputs.Image(type="pil"), # Accept an image as input
outputs="text", # Return extracted text
title="OCR with TrOCR",
description="Upload an image, and the fine-tuned TrOCR model will extract the text for you."
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()