Multimodal_GPT / app.py
HemaAM's picture
Updated descriptions
d9c0d66 verified
import torch
import torch.nn as nn
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from torchvision import transforms
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
class _MLPVectorProjector(nn.Module):
def __init__(
self, input_hidden_size: int, lm_hidden_size: int, num_layers: int, width: int
):
super(_MLPVectorProjector, self).__init__()
self.mlps = nn.ModuleList()
for _ in range(width):
mlp = [nn.Linear(input_hidden_size, lm_hidden_size, bias=False)]
for _ in range(1, num_layers):
mlp.append(nn.GELU())
mlp.append(nn.Linear(lm_hidden_size, lm_hidden_size, bias=False))
self.mlps.append(nn.Sequential(*mlp))
def forward(self, x):
return torch.cat([mlp(x) for mlp in self.mlps], dim=-2)
## Text model
model_name = "microsoft/phi-2"
with torch.no_grad():
phi2_text = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="auto",torch_dtype=torch.float16)
tokenizer_text = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
## Audio model
model_name_audio = "openai/whisper-small"
pipe = pipeline(task="automatic-speech-recognition", model=model_name_audio,
chunk_length_s=30, device="cpu",)
## image model
#Clip model
model_id_clip = "openai/clip-vit-base-patch16"
model_clip = CLIPModel.from_pretrained(model_id_clip).to("cpu")
processor_clip = CLIPProcessor.from_pretrained(model_id_clip)
print('--------------Loaded CLIP----------------------')
# Preprocess the image for clip
def preprocess_image(image_path):
image = Image.open(image_path).convert("RGB")
image = transforms.Resize((224, 224))(image)
image = transforms.ToTensor()(image)
return image.unsqueeze(0)
# Get clip encoding
def encode_image(image_path):
image = preprocess_image(image_path).to("cpu")
# Dummy input_ids for text
dummy_text = ""
inputs = processor_clip(text=dummy_text, images=image, return_tensors="pt", padding=True)
outputs = model_clip(**inputs)
img_embedding = outputs.image_embeds
return img_embedding
#Get the projection model
img_proj_head = _MLPVectorProjector(512, 2560, 1, 4).to("cpu")
img_proj_head.load_state_dict(torch.load('projection_finetuned.pth', map_location=torch.device('cpu')))
print('--------------Loaded proj head----------------------')
#Get the fine-tuned phi-2 model
with torch.no_grad():
phi2_finetuned = AutoModelForCausalLM.from_pretrained(
"phi2_adaptor_fine_tuned", trust_remote_code=True).to("cpu")
print('--------------Loaded fine tuned phi2 model----------------------')
def example_inference(input_text, count, image, img_qn, audio):
pred_text = textMode(input_text, count)
pred_text_image = imageMode(image, img_qn)
pred_text_audio = audioMode(audio)
return pred_text, pred_text_image, pred_text_audio
def textMode(text, count):
count = int(count)
text = "Question: " + text + "Answer: "
inputs = tokenizer_text(text, return_tensors="pt", return_attention_mask=False)
prediction = tokenizer_text.batch_decode(
phi2_finetuned.generate(
**inputs,
max_new_tokens=count,
bos_token_id=tokenizer_text.bos_token_id,
eos_token_id=tokenizer_text.eos_token_id,
pad_token_id=tokenizer_text.pad_token_id
)
)
return prediction[0].rstrip('<|endoftext|>').rstrip("\n")
def imageMode(image, question):
image_embedding = encode_image(image)
print('-------Image embedding from clip obtained-----------')
imgToTextEmb = img_proj_head(image_embedding).unsqueeze(0)
print('-------text embedding from projection obtained-----------')
question = "Question: " + question + "Answer: "
Qtokens = torch.tensor(tokenizer_text.encode(question, add_special_tokens=True)).unsqueeze(0)
Qtoken_embeddings = phi2_finetuned.get_submodule('model.embed_tokens')(Qtokens)
print('-------question embedding from phi2 obtained-----------')
inputs = torch.concat((imgToTextEmb, Qtoken_embeddings), axis=-2)
prediction = tokenizer_text.batch_decode(
phi2_finetuned.generate(
inputs_embeds=inputs,
max_new_tokens=50,
bos_token_id=tokenizer_text.bos_token_id,
eos_token_id=tokenizer_text.eos_token_id,
pad_token_id=tokenizer_text.pad_token_id
)
)
text_pred = prediction[0].strip('<|endoftext|>').rstrip("\n")
return text_pred
def audioMode(audio):
if audio is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
print('---------type of audio--------------')
print(type(audio))
print(audio)
text = pipe(audio, batch_size=8, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
pred_text = textMode(text, 50)
return pred_text
interface_title = "Multimodal GPT Application"
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(f"## **{interface_title}**")
gr.Markdown("Choose the input mode (text/image/audio) for text generation to chat")
with gr.Tab("Text mode"):
text_input = gr.Textbox(placeholder="Enter a prompt", label="Input")
text_input_count = gr.Textbox(placeholder="Enter number of characters you want to generate", label="Count")
text_button = gr.Button("Submit")
text_output = gr.Textbox(label="Chat GPT like text")
with gr.Tab("Image mode"):
with gr.Row():
image_input = gr.Image(type="filepath")
image_text_input = gr.Textbox(placeholder="Enter a question/prompt around the image", label="Question/Prompt")
image_button = gr.Button("Submit")
image_text_output = gr.Textbox(label="Answer")
with gr.Tab("Audio mode"):
audio_input = gr.Audio(type="filepath")
audio_button = gr.Button("Submit")
audio_text_output = gr.Textbox(label="Chat GPT like text")
text_button.click(textMode, inputs=[text_input, text_input_count], outputs=text_output)
image_button.click(imageMode, inputs=[image_input,image_text_input], outputs=image_text_output)
audio_button.click(audioMode, inputs=audio_input, outputs=audio_text_output)
gr.Examples(
examples=[
["Briefly explain the geographical features of India?","50","img69.jpg","What is the man behind the counter doing?","audio_ex3.mp3"]
],
inputs=[text_input, text_input_count, image_input, image_text_input, audio_input],
outputs=[text_output, image_text_output, audio_text_output],
fn=example_inference,
)
demo.launch()