from transformers import AutoModel, AutoTokenizer,AutoModelForCausalLM import gradio as gr import torch # tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) # model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() # tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B-Chat", trust_remote_code=True) # model = AutoModel.from_pretrained("baichuan-inc/Baichuan-13B-Chat", trust_remote_code=True).float() tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-13B-Chat", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-13B-Chat", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True) model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan-13B-Chat") model = model.eval() MAX_TURNS = 20 MAX_BOXES = MAX_TURNS * 2 def predict(input, max_length, top_p, temperature, history=None): if history is None: history = [] for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, temperature=temperature): updates = [] for query, response in history: updates.append(gr.update(visible=True, value="用户:" + query)) updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response)) if len(updates) < MAX_BOXES: updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates)) yield [history] + updates with gr.Blocks() as demo: state = gr.State([]) text_boxes = [] for i in range(MAX_BOXES): if i % 2 == 0: text_boxes.append(gr.Markdown(visible=False, label="提问:")) else: text_boxes.append(gr.Markdown(visible=False, label="回复:")) with gr.Row(): with gr.Column(scale=4): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=11).style( container=False) with gr.Column(scale=1): max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) button = gr.Button("Generate") button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes) demo.queue().launch(share=False, inbrowser=True)