File size: 626 Bytes
8d00d40
 
 
 
 
 
 
 
 
 
 
 
 
 
7271103
3afb68f
8d00d40
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import gradio as gr
from transformers import pipeline

# Load the summarization model from Hugging Face
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

# Function to perform text summarization
def summarize_text(article):
    summary = summarizer(article, max_length=130, min_length=30, do_sample=False)
    return summary[0]['summary_text']

# Create the Gradio interface
iface = gr.Interface(
    fn=summarize_text,
    inputs=gr.TextArea( placeholder="Enter your article here..."),
    outputs=gr.Textbox( placeholder="Summary will appear here...")
)

if __name__ == "__main__":
    iface.launch()