IDM-VTON
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/projects
/PointRend
/finetune_net.py
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
PointRend Training Script. | |
This script is a simplified version of the training script in detectron2/tools. | |
""" | |
import os | |
import torch | |
import detectron2.utils.comm as comm | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import MetadataCatalog, build_detection_train_loader | |
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch | |
from detectron2.evaluation import ( | |
CityscapesInstanceEvaluator, | |
CityscapesSemSegEvaluator, | |
COCOEvaluator, | |
DatasetEvaluators, | |
LVISEvaluator, | |
SemSegEvaluator, | |
verify_results, | |
) | |
from point_rend import SemSegDatasetMapper, add_pointrend_config | |
os.environ['CUDA_VISIBLE_DEVICES'] = '4' | |
# Register Custom Dataset | |
from detectron2.data.datasets import register_coco_instances | |
register_coco_instances("CIHP_train", {}, "/data03/v_xuyunqiu/multi_parsing/data/msrcnn_finetune_annotations/CIHP_train.json", "/data03/v_xuyunqiu/data/instance-level_human_parsing/Training/Images") | |
register_coco_instances("CIHP_val", {}, "/data03/v_xuyunqiu/multi_parsing/data/msrcnn_finetune_annotations/CIHP_val.json", "/data03/v_xuyunqiu/data/instance-level_human_parsing/Validation/Images") | |
class Trainer(DefaultTrainer): | |
""" | |
We use the "DefaultTrainer" which contains a number pre-defined logic for | |
standard training workflow. They may not work for you, especially if you | |
are working on a new research project. In that case you can use the cleaner | |
"SimpleTrainer", or write your own training loop. | |
""" | |
def build_evaluator(cls, cfg, dataset_name, output_folder=None): | |
""" | |
Create evaluator(s) for a given dataset. | |
This uses the special metadata "evaluator_type" associated with each builtin dataset. | |
For your own dataset, you can simply create an evaluator manually in your | |
script and do not have to worry about the hacky if-else logic here. | |
""" | |
if output_folder is None: | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
evaluator_list = [] | |
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type | |
if evaluator_type == "lvis": | |
return LVISEvaluator(dataset_name, cfg, True, output_folder) | |
if evaluator_type == "coco": | |
return COCOEvaluator(dataset_name, cfg, True, output_folder) | |
if evaluator_type == "sem_seg": | |
return SemSegEvaluator( | |
dataset_name, | |
distributed=True, | |
num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES, | |
ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, | |
output_dir=output_folder, | |
) | |
if evaluator_type == "cityscapes_instance": | |
assert ( | |
torch.cuda.device_count() >= comm.get_rank() | |
), "CityscapesEvaluator currently do not work with multiple machines." | |
return CityscapesInstanceEvaluator(dataset_name) | |
if evaluator_type == "cityscapes_sem_seg": | |
assert ( | |
torch.cuda.device_count() >= comm.get_rank() | |
), "CityscapesEvaluator currently do not work with multiple machines." | |
return CityscapesSemSegEvaluator(dataset_name) | |
if len(evaluator_list) == 0: | |
raise NotImplementedError( | |
"no Evaluator for the dataset {} with the type {}".format( | |
dataset_name, evaluator_type | |
) | |
) | |
if len(evaluator_list) == 1: | |
return evaluator_list[0] | |
return DatasetEvaluators(evaluator_list) | |
def build_train_loader(cls, cfg): | |
if "SemanticSegmentor" in cfg.MODEL.META_ARCHITECTURE: | |
mapper = SemSegDatasetMapper(cfg, True) | |
else: | |
mapper = None | |
return build_detection_train_loader(cfg, mapper=mapper) | |
def setup(args): | |
""" | |
Create configs and perform basic setups. | |
""" | |
cfg = get_cfg() | |
add_pointrend_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
default_setup(cfg, args) | |
return cfg | |
def main(args): | |
cfg = setup(args) | |
if args.eval_only: | |
model = Trainer.build_model(cfg) | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=args.resume | |
) | |
res = Trainer.test(cfg, model) | |
if comm.is_main_process(): | |
verify_results(cfg, res) | |
return res | |
trainer = Trainer(cfg) | |
trainer.resume_or_load(resume=args.resume) | |
return trainer.train() | |
if __name__ == "__main__": | |
args = default_argument_parser().parse_args() | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |