Spaces:
Han-123
/
Running on Zero

File size: 13,801 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Copyright (c) Facebook, Inc. and its affiliates.
import torch
import torch.distributed as dist
from fvcore.nn.distributed import differentiable_all_reduce
from torch import nn
from torch.nn import functional as F

from detectron2.utils import comm, env

from .wrappers import BatchNorm2d


class FrozenBatchNorm2d(nn.Module):
    """
    BatchNorm2d where the batch statistics and the affine parameters are fixed.

    It contains non-trainable buffers called
    "weight" and "bias", "running_mean", "running_var",
    initialized to perform identity transformation.

    The pre-trained backbone models from Caffe2 only contain "weight" and "bias",
    which are computed from the original four parameters of BN.
    The affine transform `x * weight + bias` will perform the equivalent
    computation of `(x - running_mean) / sqrt(running_var) * weight + bias`.
    When loading a backbone model from Caffe2, "running_mean" and "running_var"
    will be left unchanged as identity transformation.

    Other pre-trained backbone models may contain all 4 parameters.

    The forward is implemented by `F.batch_norm(..., training=False)`.
    """

    _version = 3

    def __init__(self, num_features, eps=1e-5):
        super().__init__()
        self.num_features = num_features
        self.eps = eps
        self.register_buffer("weight", torch.ones(num_features))
        self.register_buffer("bias", torch.zeros(num_features))
        self.register_buffer("running_mean", torch.zeros(num_features))
        self.register_buffer("running_var", torch.ones(num_features) - eps)
        self.register_buffer("num_batches_tracked", None)

    def forward(self, x):
        if x.requires_grad:
            # When gradients are needed, F.batch_norm will use extra memory
            # because its backward op computes gradients for weight/bias as well.
            scale = self.weight * (self.running_var + self.eps).rsqrt()
            bias = self.bias - self.running_mean * scale
            scale = scale.reshape(1, -1, 1, 1)
            bias = bias.reshape(1, -1, 1, 1)
            out_dtype = x.dtype  # may be half
            return x * scale.to(out_dtype) + bias.to(out_dtype)
        else:
            # When gradients are not needed, F.batch_norm is a single fused op
            # and provide more optimization opportunities.
            return F.batch_norm(
                x,
                self.running_mean,
                self.running_var,
                self.weight,
                self.bias,
                training=False,
                eps=self.eps,
            )

    def _load_from_state_dict(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        version = local_metadata.get("version", None)

        if version is None or version < 2:
            # No running_mean/var in early versions
            # This will silent the warnings
            if prefix + "running_mean" not in state_dict:
                state_dict[prefix + "running_mean"] = torch.zeros_like(self.running_mean)
            if prefix + "running_var" not in state_dict:
                state_dict[prefix + "running_var"] = torch.ones_like(self.running_var)

        super()._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )

    def __repr__(self):
        return "FrozenBatchNorm2d(num_features={}, eps={})".format(self.num_features, self.eps)

    @classmethod
    def convert_frozen_batchnorm(cls, module):
        """
        Convert all BatchNorm/SyncBatchNorm in module into FrozenBatchNorm.

        Args:
            module (torch.nn.Module):

        Returns:
            If module is BatchNorm/SyncBatchNorm, returns a new module.
            Otherwise, in-place convert module and return it.

        Similar to convert_sync_batchnorm in
        https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py
        """
        bn_module = nn.modules.batchnorm
        bn_module = (bn_module.BatchNorm2d, bn_module.SyncBatchNorm)
        res = module
        if isinstance(module, bn_module):
            res = cls(module.num_features)
            if module.affine:
                res.weight.data = module.weight.data.clone().detach()
                res.bias.data = module.bias.data.clone().detach()
            res.running_mean.data = module.running_mean.data
            res.running_var.data = module.running_var.data
            res.eps = module.eps
            res.num_batches_tracked = module.num_batches_tracked
        else:
            for name, child in module.named_children():
                new_child = cls.convert_frozen_batchnorm(child)
                if new_child is not child:
                    res.add_module(name, new_child)
        return res

    @classmethod
    def convert_frozenbatchnorm2d_to_batchnorm2d(cls, module: nn.Module) -> nn.Module:
        """
        Convert all FrozenBatchNorm2d to BatchNorm2d

        Args:
            module (torch.nn.Module):

        Returns:
            If module is FrozenBatchNorm2d, returns a new module.
            Otherwise, in-place convert module and return it.

        This is needed for quantization:
            https://fb.workplace.com/groups/1043663463248667/permalink/1296330057982005/
        """

        res = module
        if isinstance(module, FrozenBatchNorm2d):
            res = torch.nn.BatchNorm2d(module.num_features, module.eps)

            res.weight.data = module.weight.data.clone().detach()
            res.bias.data = module.bias.data.clone().detach()
            res.running_mean.data = module.running_mean.data.clone().detach()
            res.running_var.data = module.running_var.data.clone().detach()
            res.eps = module.eps
            res.num_batches_tracked = module.num_batches_tracked
        else:
            for name, child in module.named_children():
                new_child = cls.convert_frozenbatchnorm2d_to_batchnorm2d(child)
                if new_child is not child:
                    res.add_module(name, new_child)
        return res


def get_norm(norm, out_channels):
    """
    Args:
        norm (str or callable): either one of BN, SyncBN, FrozenBN, GN;
            or a callable that takes a channel number and returns
            the normalization layer as a nn.Module.

    Returns:
        nn.Module or None: the normalization layer
    """
    if norm is None:
        return None
    if isinstance(norm, str):
        if len(norm) == 0:
            return None
        norm = {
            "BN": BatchNorm2d,
            # Fixed in https://github.com/pytorch/pytorch/pull/36382
            "SyncBN": NaiveSyncBatchNorm if env.TORCH_VERSION <= (1, 5) else nn.SyncBatchNorm,
            "FrozenBN": FrozenBatchNorm2d,
            "GN": lambda channels: nn.GroupNorm(32, channels),
            # for debugging:
            "nnSyncBN": nn.SyncBatchNorm,
            "naiveSyncBN": NaiveSyncBatchNorm,
            # expose stats_mode N as an option to caller, required for zero-len inputs
            "naiveSyncBN_N": lambda channels: NaiveSyncBatchNorm(channels, stats_mode="N"),
            "LN": lambda channels: LayerNorm(channels),
        }[norm]
    return norm(out_channels)


class NaiveSyncBatchNorm(BatchNorm2d):
    """
    In PyTorch<=1.5, ``nn.SyncBatchNorm`` has incorrect gradient
    when the batch size on each worker is different.
    (e.g., when scale augmentation is used, or when it is applied to mask head).

    This is a slower but correct alternative to `nn.SyncBatchNorm`.

    Note:
        There isn't a single definition of Sync BatchNorm.

        When ``stats_mode==""``, this module computes overall statistics by using
        statistics of each worker with equal weight.  The result is true statistics
        of all samples (as if they are all on one worker) only when all workers
        have the same (N, H, W). This mode does not support inputs with zero batch size.

        When ``stats_mode=="N"``, this module computes overall statistics by weighting
        the statistics of each worker by their ``N``. The result is true statistics
        of all samples (as if they are all on one worker) only when all workers
        have the same (H, W). It is slower than ``stats_mode==""``.

        Even though the result of this module may not be the true statistics of all samples,
        it may still be reasonable because it might be preferrable to assign equal weights
        to all workers, regardless of their (H, W) dimension, instead of putting larger weight
        on larger images. From preliminary experiments, little difference is found between such
        a simplified implementation and an accurate computation of overall mean & variance.
    """

    def __init__(self, *args, stats_mode="", **kwargs):
        super().__init__(*args, **kwargs)
        assert stats_mode in ["", "N"]
        self._stats_mode = stats_mode

    def forward(self, input):
        if comm.get_world_size() == 1 or not self.training:
            return super().forward(input)

        B, C = input.shape[0], input.shape[1]

        half_input = input.dtype == torch.float16
        if half_input:
            # fp16 does not have good enough numerics for the reduction here
            input = input.float()
        mean = torch.mean(input, dim=[0, 2, 3])
        meansqr = torch.mean(input * input, dim=[0, 2, 3])

        if self._stats_mode == "":
            assert B > 0, 'SyncBatchNorm(stats_mode="") does not support zero batch size.'
            vec = torch.cat([mean, meansqr], dim=0)
            vec = differentiable_all_reduce(vec) * (1.0 / dist.get_world_size())
            mean, meansqr = torch.split(vec, C)
            momentum = self.momentum
        else:
            if B == 0:
                vec = torch.zeros([2 * C + 1], device=mean.device, dtype=mean.dtype)
                vec = vec + input.sum()  # make sure there is gradient w.r.t input
            else:
                vec = torch.cat(
                    [
                        mean,
                        meansqr,
                        torch.ones([1], device=mean.device, dtype=mean.dtype),
                    ],
                    dim=0,
                )
            vec = differentiable_all_reduce(vec * B)

            total_batch = vec[-1].detach()
            momentum = total_batch.clamp(max=1) * self.momentum  # no update if total_batch is 0
            mean, meansqr, _ = torch.split(vec / total_batch.clamp(min=1), C)  # avoid div-by-zero

        var = meansqr - mean * mean
        invstd = torch.rsqrt(var + self.eps)
        scale = self.weight * invstd
        bias = self.bias - mean * scale
        scale = scale.reshape(1, -1, 1, 1)
        bias = bias.reshape(1, -1, 1, 1)

        self.running_mean += momentum * (mean.detach() - self.running_mean)
        self.running_var += momentum * (var.detach() - self.running_var)
        ret = input * scale + bias
        if half_input:
            ret = ret.half()
        return ret


class CycleBatchNormList(nn.ModuleList):
    """
    Implement domain-specific BatchNorm by cycling.

    When a BatchNorm layer is used for multiple input domains or input
    features, it might need to maintain a separate test-time statistics
    for each domain. See Sec 5.2 in :paper:`rethinking-batchnorm`.

    This module implements it by using N separate BN layers
    and it cycles through them every time a forward() is called.

    NOTE: The caller of this module MUST guarantee to always call
    this module by multiple of N times. Otherwise its test-time statistics
    will be incorrect.
    """

    def __init__(self, length: int, bn_class=nn.BatchNorm2d, **kwargs):
        """
        Args:
            length: number of BatchNorm layers to cycle.
            bn_class: the BatchNorm class to use
            kwargs: arguments of the BatchNorm class, such as num_features.
        """
        self._affine = kwargs.pop("affine", True)
        super().__init__([bn_class(**kwargs, affine=False) for k in range(length)])
        if self._affine:
            # shared affine, domain-specific BN
            channels = self[0].num_features
            self.weight = nn.Parameter(torch.ones(channels))
            self.bias = nn.Parameter(torch.zeros(channels))
        self._pos = 0

    def forward(self, x):
        ret = self[self._pos](x)
        self._pos = (self._pos + 1) % len(self)

        if self._affine:
            w = self.weight.reshape(1, -1, 1, 1)
            b = self.bias.reshape(1, -1, 1, 1)
            return ret * w + b
        else:
            return ret

    def extra_repr(self):
        return f"affine={self._affine}"


class LayerNorm(nn.Module):
    """
    A LayerNorm variant, popularized by Transformers, that performs point-wise mean and
    variance normalization over the channel dimension for inputs that have shape
    (batch_size, channels, height, width).
    https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa B950
    """

    def __init__(self, normalized_shape, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x