Spaces:
Runtime error
Runtime error
File size: 12,170 Bytes
c818b2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
ai_single_response.py - a script to generate a response to a prompt from a pretrained GPT model
example:
*\gpt2_chatbot> python ai_single_response.py --model "GPT2_conversational_355M_WoW10k" --prompt "hey, what's up?" --time
query_gpt_model is used throughout the code, and is the "fundamental" building block of the bot and how everything works. I would recommend testing this function with a few different models.
"""
import argparse
import pprint as pp
import sys
import time
import warnings
from datetime import datetime
from pathlib import Path
import logging
logging.basicConfig(
filename=f"LOGFILE-{Path(__file__).stem}.log",
filemode="a",
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
level=logging.INFO,
)
from utils import DisableLogger, print_spacer, remove_trailing_punctuation
with DisableLogger():
from cleantext import clean
warnings.filterwarnings(action="ignore", message=".*gradient_checkpointing*")
from aitextgen import aitextgen
def extract_response(full_resp: list, plist: list, verbose: bool = False):
"""
extract_response - helper fn for ai_single_response.py. By default aitextgen returns the prompt and the response, we just want the response
Args:
full_resp (list): the full response from aitextgen
plist (list): the prompt list
verbose (bool, optional): Defaults to False.
Returns:
response (str): the response, without the prompt
"""
bot_response = []
for line in full_resp:
if line.lower() in plist and len(bot_response) < len(plist):
first_loc = plist.index(line)
del plist[first_loc]
continue
bot_response.append(line)
full_resp = [clean(ele, lower=False) for ele in bot_response]
if verbose:
print("the isolated responses are:\n")
pp.pprint(full_resp)
print_spacer()
print("the input prompt was:\n")
pp.pprint(plist)
print_spacer()
return full_resp # list of only the model generated responses
def get_bot_response(
name_resp: str, model_resp: list, name_spk: str, verbose: bool = False
):
"""
get_bot_response - gets the bot response to a prompt, checking to ensure that additional statements by the "speaker" are not included in the response.
Args:
name_resp (str): the name of the responder
model_resp (list): the model response
name_spk (str): the name of the speaker
verbose (bool, optional): Defaults to False.
Returns:
bot_response (str): the bot response, isolated down to just text without the "name tokens" or further messages from the speaker.
"""
fn_resp = []
name_counter = 0
break_safe = False
for resline in model_resp:
if name_resp.lower() in resline.lower():
name_counter += 1
break_safe = True
continue
if ":" in resline and name_resp.lower() not in resline.lower():
break
if name_spk.lower() in resline.lower() and not break_safe:
break
else:
fn_resp.append(resline)
if verbose:
print("the full response is:\n")
print("\n".join(fn_resp))
return fn_resp
def query_gpt_model(
folder_path: str or Path,
prompt_msg: str,
conversation_history: list = None,
speaker: str = None,
responder: str = None,
resp_length: int = 48,
kparam: int = 20,
temp: float = 0.4,
top_p: float = 0.9,
aitextgen_obj=None,
verbose: bool = False,
use_gpu: bool = False,
):
"""
query_gpt_model - queries the GPT model and returns the first response by <responder>
Args:
folder_path (str or Path): the path to the model folder
prompt_msg (str): the prompt message
conversation_history (list, optional): the conversation history. Defaults to None.
speaker (str, optional): the name of the speaker. Defaults to None.
responder (str, optional): the name of the responder. Defaults to None.
resp_length (int, optional): the length of the response in tokens. Defaults to 48.
kparam (int, optional): the k parameter for the top_k. Defaults to 40.
temp (float, optional): the temperature for the softmax. Defaults to 0.7.
top_p (float, optional): the top_p parameter for nucleus sampling. Defaults to 0.9.
aitextgen_obj (_type_, optional): a pre-loaded aitextgen object. Defaults to None.
verbose (bool, optional): Defaults to False.
use_gpu (bool, optional): Defaults to False.
Returns:
model_resp (dict): the model response, as a dict with the following keys: out_text (str) the generated text and full_conv (dict) the conversation history
"""
try:
ai = (
aitextgen_obj
if aitextgen_obj
else aitextgen(
model_folder=folder_path,
to_gpu=use_gpu,
)
)
except Exception as e:
print(f"Unable to initialize aitextgen model: {e}")
print(
f"Check model folder: {folder_path}, run the download_models.py script to download the model files"
)
sys.exit(1)
mpath = Path(folder_path)
mpath_base = (
mpath.stem
) # only want the base name of the model folder for check below
# these models used person alpha and person beta in training
mod_ids = ["natqa", "dd", "trivqa", "wow", "conversational"]
if any(substring in str(mpath_base).lower() for substring in mod_ids):
speaker = "person alpha" if speaker is None else speaker
responder = "person beta" if responder is None else responder
else:
if verbose:
print("speaker and responder not set - using default")
speaker = "person" if speaker is None else speaker
responder = "george robot" if responder is None else responder
prompt_list = (
conversation_history if conversation_history is not None else []
) # track conversation
prompt_list.append(speaker.lower() + ":" + "\n")
prompt_list.append(prompt_msg.lower() + "\n")
prompt_list.append("\n")
prompt_list.append(responder.lower() + ":" + "\n")
this_prompt = "".join(prompt_list)
pr_len = len(this_prompt)
if verbose:
print("overall prompt:\n")
pp.pprint(prompt_list)
# call the model
print("\n... generating...")
this_result = ai.generate(
n=1,
top_k=kparam,
batch_size=128,
# the prompt input counts for text length constraints
max_length=resp_length + pr_len,
min_length=16 + pr_len,
prompt=this_prompt,
temperature=temp,
top_p=top_p,
do_sample=True,
return_as_list=True,
use_cache=True,
)
if verbose:
print("\n... generated:\n")
pp.pprint(this_result) # for debugging
# process the full result to get the ~bot response~ piece
this_result = str(this_result[0]).split("\n")
input_prompt = this_prompt.split("\n")
diff_list = extract_response(
this_result, input_prompt, verbose=verbose
) # isolate the responses from the prompts
# extract the bot response from the model generated text
bot_dialogue = get_bot_response(
name_resp=responder, model_resp=diff_list, name_spk=speaker, verbose=verbose
)
bot_resp = ", ".join(bot_dialogue)
bot_resp = remove_trailing_punctuation(
bot_resp.strip()
) # remove trailing punctuation to seem more natural
if verbose:
print("\n... bot response:\n")
pp.pprint(bot_resp)
prompt_list.append(bot_resp + "\n")
prompt_list.append("\n")
conv_history = {}
for i, line in enumerate(prompt_list):
if i not in conv_history.keys():
conv_history[i] = line
if verbose:
print("\n... conversation history:\n")
pp.pprint(conv_history)
print("\nfinished!")
# return the bot response and the full conversation
return {"out_text": bot_resp, "full_conv": conv_history}
# Set up the parsing of command-line arguments
def get_parser():
"""
get_parser [a helper function for the argparse module]
Returns: argparse.ArgumentParser
"""
parser = argparse.ArgumentParser(
description="submit a message and have a pretrained GPT model respond"
)
parser.add_argument(
"-p",
"--prompt",
required=True, # MUST HAVE A PROMPT
type=str,
help="the message the bot is supposed to respond to. Prompt is said by speaker, answered by responder.",
)
parser.add_argument(
"-m",
"--model",
required=False,
type=str,
default="distilgpt2-tiny-conversational",
help="folder - with respect to git directory of your repo that has the model files in it (pytorch.bin + "
"config.json). You can also pass the huggingface model name (e.g. distilgpt2)",
)
parser.add_argument(
"-s",
"--speaker",
required=False,
default=None,
help="Who the prompt is from (to the bot). Primarily relevant to bots trained on multi-individual chat data",
)
parser.add_argument(
"-r",
"--responder",
required=False,
default="person beta",
help="who the responder is. Primarily relevant to bots trained on multi-individual chat data",
)
parser.add_argument(
"--topk",
required=False,
type=int,
default=20,
help="how many responses to sample (positive integer). lower = more random responses",
)
parser.add_argument(
"--temp",
required=False,
type=float,
default=0.4,
help="specify temperature hyperparam (0-1). roughly considered as 'model creativity'",
)
parser.add_argument(
"--topp",
required=False,
type=float,
default=0.9,
help="nucleus sampling frac (0-1). aka: what fraction of possible options are considered?",
)
parser.add_argument(
"--resp_length",
required=False,
type=int,
default=50,
help="max length of the response (positive integer)",
)
parser.add_argument(
"-v",
"--verbose",
default=False,
action="store_true",
help="pass this argument if you want all the printouts",
)
parser.add_argument(
"-rt",
"--time",
default=False,
action="store_true",
help="pass this argument if you want to know runtime",
)
parser.add_argument(
"--use_gpu",
required=False,
action="store_true",
help="use gpu if available",
)
return parser
if __name__ == "__main__":
# parse the command line arguments
args = get_parser().parse_args()
query = args.prompt
model_dir = str(args.model)
model_loc = Path.cwd() / model_dir if "/" not in model_dir else model_dir
spkr = args.speaker
rspndr = args.responder
k_results = args.topk
my_temp = args.temp
my_top_p = args.topp
resp_length = args.resp_length
assert resp_length > 0, "response length must be positive"
want_verbose = args.verbose
want_rt = args.time
use_gpu = args.use_gpu
st = time.perf_counter()
resp = query_gpt_model(
folder_path=model_loc,
prompt_msg=query,
speaker=spkr,
responder=rspndr,
kparam=k_results,
temp=my_temp,
top_p=my_top_p,
resp_length=resp_length,
verbose=want_verbose,
use_gpu=use_gpu,
)
output = resp["out_text"]
pp.pprint(output, indent=4)
rt = round(time.perf_counter() - st, 1)
if want_rt:
print("took {runtime} seconds to generate. \n".format(runtime=rt))
if want_verbose:
print("finished - ", datetime.now())
p_list = resp["full_conv"]
print("A transcript of your chat is as follows: \n")
p_list = [item.strip() for item in p_list]
pp.pprint(p_list)
|