Spaces:
Build error
Build error
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import os | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
import google.generativeai as genai | |
from langchain_community.vectorstores import FAISS | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
from dotenv import load_dotenv | |
import traceback | |
from langchain.embeddings import HuggingFaceEmbeddings | |
import tensorflow as tf # Ensure TensorFlow is imported | |
google_api_key = 'AIzaSyBPC1o6NSGFT2LumpdompngjOOzzUNwGqk' # Fetch from .env | |
if not google_api_key: | |
raise ValueError("Google API key not found. Please check your .env file.") | |
genai.configure(api_key=google_api_key) | |
# Function to extract text from PDFs | |
def get_pdf_text(pdf_docs): | |
text = "" | |
try: | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
except Exception as e: | |
st.error(f"Error reading PDF files: {e}") | |
return text | |
# Function to split text into manageable chunks | |
def get_text_chunks(text): | |
try: | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
chunks = text_splitter.split_text(text) | |
except Exception as e: | |
st.error(f"Error splitting text: {e}") | |
return [] | |
return chunks | |
# Function to create an in-memory FAISS vector store | |
def get_vector_store(text_chunks): | |
try: | |
# Initialize HuggingFace embeddings | |
embedding_function = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v2-base-code") | |
# Using FAISS to create vector store with the Hugging Face embeddings | |
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function) | |
return vector_store | |
except Exception as e: | |
st.error(f"Error creating vector store: {e}") | |
traceback.print_exc() | |
return None | |
# Function to create a conversation chain with Google Generative AI | |
def get_conversational_chain(): | |
try: | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context. If the answer is not in | |
the provided context, say, "Answer is not available in the context." Do not provide a wrong answer. | |
Context: | |
{context} | |
Question: | |
{question} | |
Answer: | |
""" | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
except Exception as e: | |
st.error(f"Error creating conversation chain: {e}") | |
traceback.print_exc() | |
return None | |
# Function to process user input and provide a response | |
def user_input(user_question, vector_store): | |
try: | |
docs = vector_store.similarity_search(user_question) | |
chain = get_conversational_chain() | |
if chain: | |
response = chain( | |
{"input_documents": docs, "question": user_question}, | |
return_only_outputs=True | |
) | |
st.markdown(f"<div style='font-size: 16px;'> 🤖 Response:: {response['output_text']}</div>", unsafe_allow_html=True) | |
except Exception as e: | |
st.error(f"Error processing user input: {e}") | |
traceback.print_exc() | |
# Main function to handle Streamlit UI and actions | |
def main(): | |
# Set page title and icon | |
st.set_page_config(page_title="📚 Chat PDF with Gemini AI", layout="centered", page_icon="📖") | |
# Add CSS for styling | |
st.markdown( | |
""" | |
<style> | |
.main-header { | |
font-size: 36px; | |
font-weight: bold; | |
color: #0A74DA; | |
} | |
.instruction { | |
font-size: 18px; | |
margin-bottom: 20px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Add header | |
st.markdown("<h1 class='main-header'>Chat with Your PDF using Gemini AI 🤖</h1>", unsafe_allow_html=True) | |
st.markdown("<p class='instruction'>Upload your PDF, ask questions, and get detailed AI responses!</p>", unsafe_allow_html=True) | |
# Create a 2-column layout for better structure | |
col1, col2 = st.columns([12, 2]) | |
with col1: | |
user_question = st.text_input("🔍 Ask a Question from the PDF Files", placeholder="Type your question here...") | |
# Add a "Submit" button to process the question | |
if st.button("Submit"): | |
if user_question: | |
st.write("### 🧠 Thinking...") | |
# Only allow submission if vector_store is available | |
if 'vector_store' in st.session_state: | |
user_input(user_question, st.session_state.vector_store) | |
else: | |
st.error("Please upload and process a PDF file first.") | |
else: | |
st.warning("Please enter a question before submitting.") | |
with col2: | |
with st.sidebar: | |
st.title("📂 PDF Upload & Processing") | |
st.write("1. Upload multiple PDFs.") | |
st.write("2. Ask questions based on the content.") | |
pdf_docs = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type=["pdf"]) | |
if st.button("Submit & Process PDFs"): | |
if pdf_docs: | |
with st.spinner("📜 Extracting text and processing..."): | |
raw_text = get_pdf_text(pdf_docs) | |
if raw_text: | |
text_chunks = get_text_chunks(raw_text) | |
if text_chunks: | |
vector_store = get_vector_store(text_chunks) | |
if vector_store: | |
# Store vector store in session state to avoid re-processing | |
st.session_state.vector_store = vector_store | |
st.success("✅ Processing complete!") | |
else: | |
st.warning("Please upload PDF files before processing.") | |
if __name__ == "__main__": | |
main() | |