File size: 4,301 Bytes
d7acda5
 
 
b384e43
d7acda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbcd97
7a514ae
d7acda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b384e43
d7acda5
 
 
 
 
b384e43
d7acda5
aeaac81
d7acda5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import streamlit as st
from transformers import pipeline, set_seed
from transformers import AutoTokenizer
from normalizer import Normalizer
import random

import meta
import examples
from utils import (
    remote_css,
    local_css
)


class TextGeneration:
    def __init__(self):
        self.debug = False
        self.dummy_output = None
        self.tokenizer = None
        self.generator = None
        self.task = "text-generation"
        self.model_name_or_path = "HamidRezaAttar/gpt2-product-description-generator"
        set_seed(42)

    def load(self):
        if not self.debug:
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
            self.generator = pipeline(self.task, model=self.model_name_or_path, tokenizer=self.model_name_or_path)

    def generate(self, prompt, generation_kwargs):
        if not self.debug:
            generation_kwargs["num_return_sequences"] = 1

            max_length = len(self.tokenizer(prompt)["input_ids"]) + generation_kwargs["max_length"]
            generation_kwargs["max_length"] = max_length

            generation_kwargs["return_full_text"] = False

            return self.generator(
                prompt,
                **generation_kwargs,
            )[0]["generated_text"]

        return self.dummy_output


@st.cache(allow_output_mutation=True)
def load_text_generator():
    generator = TextGeneration()
    generator.load()
    return generator


def main():
    st.set_page_config(
        page_title="GPT2 - Home",
        page_icon="🏡",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    remote_css("https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22")
    local_css("assets/ltr.css")
    generator = load_text_generator()

    st.sidebar.markdown(meta.SIDEBAR_INFO)

    max_length = st.sidebar.slider(
        label='Max Length',
        help="The maximum length of the sequence to be generated.",
        min_value=1,
        max_value=128,
        value=50,
        step=1
    )
    top_k = st.sidebar.slider(
        label='Top-k',
        help="The number of highest probability vocabulary tokens to keep for top-k-filtering",
        min_value=40,
        max_value=80,
        value=50,
        step=1
    )
    top_p = st.sidebar.slider(
        label='Top-p',
        help="Only the most probable tokens with probabilities that add up to `top_p` or higher are kept for "
             "generation.",
        min_value=0.0,
        max_value=1.0,
        value=0.95,
        step=0.01
    )
    temperature = st.sidebar.slider(
        label='Temperature',
        help="The value used to module the next token probabilities",
        min_value=0.1,
        max_value=10.0,
        value=1.0,
        step=0.05
    )
    do_sample = st.sidebar.selectbox(
        label='Sampling ?',
        options=(True, False),
        help="Whether or not to use sampling; use greedy decoding otherwise.",
    )
    generation_kwargs = {
        "max_length": max_length,
        "top_k": top_k,
        "top_p": top_p,
        "temperature": temperature,
        "do_sample": do_sample,
    }

    st.markdown(meta.HEADER_INFO)
    prompts = list(examples.EXAMPLES.keys()) + ["Custom"]
    prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)

    if prompt == "Custom":
        prompt_box = meta.PROMPT_BOX
    else:
        prompt_box = random.choice(examples.EXAMPLES[prompt])

    text = st.text_area("Enter text", prompt_box)
    generation_kwargs_ph = st.empty()
    cleaner = Normalizer()
    if st.button("Generate !"):
        with st.spinner(text="Generating ..."):
            generation_kwargs_ph.markdown(", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
            if text:
                generated_text = generator.generate(text, generation_kwargs)
                generated_text = cleaner.clean_txt(generated_text)
                st.markdown(
                    f'<p class="ltr ltr-box">'
                    f'<span class="result-text">{text} <span>'
                    f'<span class="result-text generated-text">{generated_text}</span>'
                    f'</p>',
                    unsafe_allow_html=True
                )

if __name__ == '__main__':
    main()