HamidBekam's picture
Create app.py
17410e3
raw
history blame contribute delete
686 Bytes
import streamlit as st
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
# Load model and tokenizer
model_name = "dbmdz/bert-large-cased-finetuned-conll03-english"
model = AutoModelForTokenClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define pipeline for named entity recognition
ner = pipeline('ner', model=model, tokenizer=tokenizer)
# Create a Streamlit app
st.title("Named Entity Recognition with Hugging Face and Streamlit")
text = st.text_input("Enter text:")
if text:
result = ner(text)
for item in result:
st.write(f"{item['entity']} ({item['score']:.2f}): {item['word']}")