File size: 7,832 Bytes
50f0fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# coding=utf8
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
import json
import torch
import pytorch_lightning as pl
import os


class AbstractCollator:
    """
    collector for summary task
    """

    def __init__(self, tokenizer, max_enc_length, max_dec_length, prompt):
        self.tokenizer = tokenizer
        self.max_enc_length = max_enc_length
        self.max_dec_length = max_dec_length
        self.prompt = prompt

    def __call__(self, samples):

        labels = []
        attn_mask = []
        # decoder_attn_mask = []
        source_inputs = []
        for sample in samples:
            encode_dict = self.tokenizer.encode_plus(
                self.prompt + sample['text'],
                max_length=self.max_enc_length,
                padding='max_length',
                truncation=True,
                return_tensors='pt')
            decode_dict = self.tokenizer.encode_plus(
                sample['summary'],
                max_length=self.max_dec_length,
                padding='max_length',
                truncation=True,
                return_tensors='pt')
            source_inputs.append(encode_dict['input_ids'].squeeze())
            labels.append(decode_dict['input_ids'].squeeze())
            attn_mask.append(encode_dict['attention_mask'].squeeze())
            # decoder_attn_mask.append(decode_dict['attention_mask'].squeeze())
        # labels = torch.tensor(decode_dict['input'])

        source_inputs = torch.stack(source_inputs)
        labels = torch.stack(labels)
        attn_mask = torch.stack(attn_mask)
        # decoder_attn_mask = torch.stack(decoder_attn_mask)
        # decode_input_idxs = shift_tokens_right(labels, self.tokenizer.pad_token_id, self.tokenizer.pad_token_id)
        end_token_index = torch.where(labels == self.tokenizer.eos_token_id)[1]
        for idx, end_idx in enumerate(end_token_index):
            labels[idx][end_idx + 1:] = -100

        return {
            "input_ids": source_inputs,
            "attention_mask": attn_mask,
            "labels": labels,
            "text": [sample['text'] for sample in samples],
            "summary": [sample['summary'] for sample in samples]
        }


class LCSTSDataset(Dataset):
    '''
    Dataset Used for LCSTS summary task.
    '''

    def __init__(self, data_path, args):
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(
            args.pretrained_model_path, use_fast=False)
        self.data = self.load_data(data_path)
        self.prompt = args.prompt
        self.max_enc_length = args.max_enc_length
        self.max_dec_length = args.max_dec_length

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        return self.encode(self.data[index])

    def load_data(self, data_path):
        with open(data_path, "r", encoding='utf8') as f:
            lines = f.readlines()
        samples = []
        for line in tqdm(lines):
            obj = json.loads(line)
            source = obj['text']
            target = obj['summary']
            samples.append({
                "text": source,
                "summary": target
            })
        return samples

    def cal_data(self, data_path):
        with open(data_path, "r", encoding='utf8') as f:
            lines = f.readlines()
        samples = []
        enc_sizes = []
        dec_sizes = []
        for line in tqdm(lines):
            obj = json.loads(line.strip())
            source = obj['text']
            target = obj['summary']
            enc_input_ids = self.tokenizer.encode(source)
            target = self.tokenizer.encode(target)
            enc_sizes.append(len(enc_input_ids))
            dec_sizes.append(len(target)-1)
            samples.append({
                "enc_input_ids": enc_input_ids,
                "dec_input_ids": target[:-1],
                "label_ids": target[1:]
            })
        max_enc_len = max(enc_sizes)
        max_dec_len = max(dec_sizes)
        import numpy as np
        # mean of len(enc_input_ids): 74.68041911345998
        # mean of len(dec_input_ids): 14.02265483791283
        # max of len(enc_input_ids): 132
        # max of len(dec_input_ids): 31
        print('mean of len(enc_input_ids):', np.mean(enc_sizes),
              'mean of len(dec_input_ids):', np.mean(dec_sizes),
              'max of len(enc_input_ids):', max_enc_len,
              'max of len(dec_input_ids):', max_dec_len)
        return samples

    def encode(self, item):
        encode_dict = self.tokenizer.encode_plus(
            self.prompt + item['text'],
            max_length=self.max_enc_length,
            padding='max_length',
            truncation=True,
            return_tensors='pt')
        decode_dict = self.tokenizer.encode_plus(
            item['summary'],
            max_length=self.max_dec_length,
            padding='max_length',
            truncation=True)

        target = decode_dict['input_ids']
        # print('encode_dict shape:', encode_dict['input_ids'].shape)
        labels = torch.tensor(target)
        labels[target == self.tokenizer.pad_token_id] = -100
        return {
            "input_ids": encode_dict['input_ids'].squeeze(),
            "attention_mask": encode_dict['attention_mask'].squeeze(),
            "labels": labels.squeeze(),
            "text": item['text'],
            "summary": item['summary']
        }


class LCSTSDataModel(pl.LightningDataModule):
    @staticmethod
    def add_data_specific_args(parent_args):
        parser = parent_args.add_argument_group('LCSTSDataModel')
        parser.add_argument(
            '--data_dir', default='/cognitive_comp/ganruyi/data_datasets_LCSTS_LCSTS/', type=str)
        parser.add_argument('--num_workers', default=8, type=int)
        parser.add_argument('--train_data', default='train.jsonl', type=str)
        parser.add_argument('--valid_data', default='valid.jsonl', type=str)
        parser.add_argument('--test_data', default='test_public.jsonl', type=str)
        parser.add_argument('--train_batchsize', default=128, type=int)
        parser.add_argument('--valid_batchsize', default=128, type=int)
        parser.add_argument('--max_enc_length', default=128, type=int)
        parser.add_argument('--max_dec_length', default=30, type=int)
        parser.add_argument('--prompt', default='summarize:', type=str)
        return parent_args

    def __init__(self, args):
        super().__init__()
        self.args = args
        self.train_batchsize = args.train_batchsize
        self.valid_batchsize = args.valid_batchsize
        if not args.do_eval_only:
            self.train_data = LCSTSDataset(os.path.join(
                args.data_dir, args.train_data), args)
        self.valid_data = LCSTSDataset(os.path.join(
            args.data_dir, args.valid_data), args)
        self.test_data = LCSTSDataset(os.path.join(
            args.data_dir, args.test_data), args)

    def train_dataloader(self):
        return DataLoader(self.train_data,
                          shuffle=True,
                          batch_size=self.train_batchsize,
                          pin_memory=False,
                          num_workers=self.args.num_workers)

    def val_dataloader(self):
        return DataLoader(self.valid_data,
                          shuffle=False,
                          batch_size=self.valid_batchsize,
                          pin_memory=False,
                          num_workers=self.args.num_workers)

    def predict_dataloader(self):
        return DataLoader(self.test_data,
                          shuffle=False,
                          batch_size=self.valid_batchsize,
                          pin_memory=False,
                          num_workers=self.args.num_workers)