Spaces:
Runtime error
Runtime error
File size: 18,416 Bytes
50f0fbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
"""BART Style dataset. Modified from fairseq."""
import numpy as np
import torch
import math
import re
from fengshen.data.megatron_dataloader.dataset_utils import (
get_samples_mapping
)
class BartDataset(torch.utils.data.Dataset):
def __init__(self, name, indexed_dataset, data_prefix,
num_epochs, max_num_samples, masked_lm_prob,
max_seq_length, short_seq_prob, seed, tokenizer, zh_tokenizer):
# Params to store.
self.name = name
self.seed = seed
self.masked_lm_prob = masked_lm_prob
self.max_seq_length = max_seq_length
# Dataset.
self.indexed_dataset = indexed_dataset
# Build the samples mapping.
self.samples_mapping = get_samples_mapping(self.indexed_dataset,
data_prefix,
num_epochs,
max_num_samples,
self.max_seq_length - 3, # account for added tokens
short_seq_prob,
self.seed,
self.name,
False)
# Vocab stuff.
self.vocab_size = tokenizer.vocab_size
inv_vocab = {v: k for k, v in tokenizer.vocab.items()}
self.vocab_id_list = list(inv_vocab.keys())
self.vocab_id_to_token_dict = inv_vocab
self.cls_id = tokenizer.cls_token_id
self.sep_id = tokenizer.sep_token_id
self.mask_id = tokenizer.mask_token_id
self.pad_id = tokenizer.pad_token_id
self.tokenizer = tokenizer
seg_tokens = ['。', ';', ';', '!', '!', '?', '?']
seg_token_ids = []
for t in seg_tokens:
if t in tokenizer.vocab:
seg_token_ids.append(tokenizer.vocab[t])
else:
print('seg_token "{}" not in vocab'.format(t))
self.seg_token_ids = set(seg_token_ids)
self.zh_tokenizer = zh_tokenizer
# Denoising ratios
self.permute_sentence_ratio = 1.0
self.mask_ratio = masked_lm_prob # 0.15
self.random_ratio = 0.1
self.insert_ratio = 0.0
self.rotate_ratio = 0.0
self.mask_whole_word = 1
self.item_transform_func = None
self.mask_span_distribution = None
if False:
_lambda = 3 # Poisson lambda
lambda_to_the_k = 1
e_to_the_minus_lambda = math.exp(-_lambda)
k_factorial = 1
ps = []
for k in range(0, 128):
ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
lambda_to_the_k *= _lambda
k_factorial *= k + 1
if ps[-1] < 0.0000001:
break
ps = torch.FloatTensor(ps)
self.mask_span_distribution = torch.distributions.Categorical(ps)
def __len__(self):
return self.samples_mapping.shape[0]
def __getitem__(self, idx):
start_idx, end_idx, seq_length = self.samples_mapping[idx]
sample = [self.indexed_dataset[i] for i in range(start_idx, end_idx)]
# Note that this rng state should be numpy and not python since
# python randint is inclusive whereas the numpy one is exclusive.
# We % 2**32 since numpy requres the seed to be between 0 and 2**32 - 1
np_rng = np.random.RandomState(seed=((self.seed + idx) % 2**32))
return self.build_training_sample(sample, self.max_seq_length, np_rng)
def build_training_sample(self, sample, max_seq_length, np_rng):
"""Biuld training sample.
Arguments:
sample: A list of sentences in which each sentence is a list token ids.
max_seq_length: Desired sequence length.
np_rng: Random number genenrator. Note that this rng state should be
numpy and not python since python randint is inclusive for
the opper bound whereas the numpy one is exclusive.
"""
# permute sentences
full_stops = []
tokens = [self.cls_id]
for sent in sample:
for t in sent:
token = self.vocab_id_to_token_dict[t]
if len(re.findall('##[\u4E00-\u9FA5]', token)) > 0:
# 兼容erlangshen ##的方式做whole word mask
t = self.tokenizer.convert_tokens_to_ids(token[2:])
tokens.append(t)
if t in self.seg_token_ids:
tokens.append(self.sep_id)
if tokens[-1] != self.sep_id:
tokens.append(self.sep_id)
if len(tokens) > max_seq_length:
tokens = tokens[:max_seq_length]
tokens[-1] = self.sep_id
tokens = torch.LongTensor(tokens)
full_stops = (tokens == self.sep_id).long()
assert (max_seq_length - tokens.shape[0]) >= 0, (tokens.size(), tokens[-1], max_seq_length)
source, target = tokens, tokens[1:].clone()
use_decoder = 1
# if torch.rand(1).item() < 0.5:
# use_decoder = 0
if self.permute_sentence_ratio > 0.0 and use_decoder == 1:
source = self.permute_sentences(source, full_stops, self.permute_sentence_ratio)
if self.mask_ratio > 0.0:
replace_length = 1 if use_decoder else -1
mask_ratio = self.mask_ratio * 2 if use_decoder else self.mask_ratio
source = self.add_whole_word_mask(source, mask_ratio, replace_length)
if self.insert_ratio > 0.0:
raise NotImplementedError
source = self.add_insertion_noise(source, self.insert_ratio)
if self.rotate_ratio > 0.0 and np.random.random() < self.rotate_ratio:
raise NotImplementedError
source = self.add_rolling_noise(source)
# there can additional changes to make:
if self.item_transform_func is not None:
source, target = self.item_transform_func(source, target)
assert (source >= 0).all()
# assert (source[1:-1] >= 1).all()
assert (source <= self.vocab_size).all()
assert source[0] == self.cls_id
assert source[-1] == self.sep_id
# tokenizer = get_tokenizer()
# print(' '.join(tokenizer.tokenizer.convert_ids_to_tokens(source)))
# print(tokenizer.detokenize(target))
# print(tokenizer.detokenize(source))
# print()
prev_output_tokens = torch.zeros_like(target)
prev_output_tokens[0] = self.sep_id # match the preprocessing in fairseq
prev_output_tokens[1:] = target[:-1]
# src_padding_length = max_seq_length - source.shape[0]
# tgt_padding_length = max_seq_length - target.shape[0]
# assert src_padding_length >= 0, (source.size(), source[-1], max_seq_length)
# assert tgt_padding_length >= 0, (target.size(), target[-1], max_seq_length)
source_ = torch.full((max_seq_length,), self.pad_id, dtype=torch.long)
source_[:source.shape[0]] = source
target_ = torch.full((max_seq_length,), -100, dtype=torch.long)
# decoder not need bos in the front
target_[:target.shape[0]] = target
prev_output_tokens_ = torch.full((max_seq_length,), self.pad_id, dtype=torch.long)
prev_output_tokens_[:prev_output_tokens.shape[0]] = prev_output_tokens
return {
"input_ids": source_,
"labels": target_,
# "decoder_input_ids": prev_output_tokens_,
"attention_mask": (source_ != self.pad_id).long()
}
def permute_sentences(self, source, full_stops, p=1.0):
# Tokens that are full stops, where the previous token is not
sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2
result = source.clone()
num_sentences = sentence_ends.size(0)
num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0)
substitutions = torch.randperm(num_sentences)[:num_to_permute]
ordering = torch.arange(0, num_sentences)
ordering[substitutions] = substitutions[torch.randperm(num_to_permute)]
# Ignore <bos> at start
index = 1
for i in ordering:
sentence = source[(sentence_ends[i - 1] if i > 0 else 1): sentence_ends[i]]
result[index: index + sentence.size(0)] = sentence
index += sentence.size(0)
return result
def word_starts_en(self, source):
if self.mask_whole_word is not None:
is_word_start = self.mask_whole_word.gather(0, source)
else:
is_word_start = torch.ones(source.size())
is_word_start[0] = 0
is_word_start[-1] = 0
return is_word_start
def word_starts(self, source):
if self.mask_whole_word is None:
is_word_start = torch.ones(source.size())
is_word_start[0] = 0
is_word_start[-1] = 0
return is_word_start
raw_tokens = [self.vocab_id_to_token_dict[i] for i in source.tolist()]
words = [raw_tokens[0]] + \
self.zh_tokenizer(''.join(raw_tokens[1:-1]), HMM=True) + [raw_tokens[-1]]
def _is_chinese_char(c):
"""Checks whether CP is the #codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if len(c) > 1:
return all([_is_chinese_char(c_i) for c_i in c])
cp = ord(c)
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def align_linear(atokens, btokens):
a2c = []
c2b = []
a2b = []
length = 0
for tok in atokens:
a2c.append([length + i for i in range(len(tok))])
length += len(tok)
for i, tok in enumerate(btokens):
c2b.extend([i for _ in range(len(tok))])
for i, amap in enumerate(a2c):
bmap = [c2b[ci] for ci in amap]
a2b.append(list(set(bmap)))
return a2b
raw_to_word_align = align_linear(raw_tokens, words)
is_word_start = torch.zeros(source.size())
word_starts = []
skip_cur_word = True
for i in range(1, len(raw_to_word_align)):
if raw_to_word_align[i-1] == raw_to_word_align[i]:
# not a word start, as they align to the same word
if not skip_cur_word and not _is_chinese_char(raw_tokens[i]):
word_starts.pop(-1)
skip_cur_word = True
continue
else:
is_word_start[i] = 1
if _is_chinese_char(raw_tokens[i]):
word_starts.append(i)
skip_cur_word = False
is_word_start[0] = 0
is_word_start[-1] = 0
word_starts = torch.tensor(word_starts).long().view(-1, 1)
return is_word_start, word_starts
def add_whole_word_mask(self, source, p, replace_length=1):
is_word_start, word_starts = self.word_starts(source)
num_to_mask_word = int(math.ceil(word_starts.size(0) * p))
num_to_mask_char = int(math.ceil(word_starts.size(0) * p * 0.1))
num_to_mask = num_to_mask_word + num_to_mask_char
if num_to_mask > word_starts.size(0):
word_starts = is_word_start.nonzero(as_tuple=False)
num_inserts = 0
if num_to_mask == 0:
return source
if self.mask_span_distribution is not None:
lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))
# Make sure we have enough to mask
cum_length = torch.cumsum(lengths, 0)
while cum_length[-1] < num_to_mask:
lengths = torch.cat(
[
lengths,
self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
],
dim=0,
)
cum_length = torch.cumsum(lengths, 0)
# Trim to masking budget
i = 0
while cum_length[i] < num_to_mask:
i += 1
lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
num_to_mask = i + 1
lengths = lengths[:num_to_mask]
# Handle 0-length mask (inserts) separately
lengths = lengths[lengths > 0]
num_inserts = num_to_mask - lengths.size(0)
num_to_mask -= num_inserts
if num_to_mask == 0:
return self.add_insertion_noise(source, num_inserts / source.size(0))
assert (lengths > 0).all()
else:
lengths = torch.ones((num_to_mask,)).long()
assert is_word_start[-1] == 0
indices = word_starts[
torch.randperm(word_starts.size(0))[:num_to_mask]
].squeeze(1)
mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio
source_length = source.size(0)
assert source_length - 1 not in indices
to_keep = torch.ones(source_length, dtype=torch.bool)
is_word_start[
-1
] = 255 # acts as a long length, so spans don't go over the end of doc
if replace_length == 0:
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
# print(source.size(), word_starts.size(), indices.size(), mask_random.size())
source[indices] = self.mask_id
source[indices[mask_random]] = torch.randint(
1, self.vocab_size, size=(mask_random.sum(),)
)
# sorted_indices = torch.sort(indices)[0]
# continue_mask_pos = ((sorted_indices + 1)[:-1] == sorted_indices[1:])
# continue_mask_indices = sorted_indices[1:][continue_mask_pos]
# to_keep[continue_mask_indices] = 0
# for char indices, we already masked, the following loop handles word mask
indices = indices[:num_to_mask_word]
mask_random = mask_random[:num_to_mask_word]
if self.mask_span_distribution is not None:
assert len(lengths.size()) == 1
assert lengths.size() == indices.size()
lengths -= 1
while indices.size(0) > 0:
assert lengths.size() == indices.size()
lengths -= is_word_start[indices + 1].long()
uncompleted = lengths >= 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
lengths = lengths[uncompleted]
if replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_id
source[indices[mask_random]] = torch.randint(
1, self.vocab_size, size=(mask_random.sum(),)
)
else:
# A bit faster when all lengths are 1
while indices.size(0) > 0:
uncompleted = is_word_start[indices + 1] == 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
if replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_id
source[indices[mask_random]] = torch.randint(
1, self.vocab_size, size=(mask_random.sum(),)
)
assert source_length - 1 not in indices
source = source[to_keep]
if num_inserts > 0:
source = self.add_insertion_noise(source, num_inserts / source.size(0))
return source
def add_permuted_noise(self, tokens, p):
num_words = len(tokens)
num_to_permute = math.ceil(((num_words * 2) * p) / 2.0)
substitutions = torch.randperm(num_words - 2)[:num_to_permute] + 1
tokens[substitutions] = tokens[substitutions[torch.randperm(num_to_permute)]]
return tokens
def add_rolling_noise(self, tokens):
offset = np.random.randint(1, max(1, tokens.size(-1) - 1) + 1)
tokens = torch.cat(
(tokens[0:1], tokens[offset:-1], tokens[1:offset], tokens[-1:]),
dim=0,
)
return tokens
def add_insertion_noise(self, tokens, p):
if p == 0.0:
return tokens
num_tokens = len(tokens)
n = int(math.ceil(num_tokens * p))
noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
noise_mask[noise_indices] = 1
result = torch.LongTensor(n + len(tokens)).fill_(-1)
num_random = int(math.ceil(n * self.random_ratio))
result[noise_indices[num_random:]] = self.mask_id
result[noise_indices[:num_random]] = torch.randint(
low=1, high=self.vocab_size, size=(num_random,)
)
result[~noise_mask] = tokens
assert (result >= 0).all()
return result
|