File size: 18,416 Bytes
50f0fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""BART Style dataset. Modified from fairseq."""

import numpy as np
import torch
import math
import re

from fengshen.data.megatron_dataloader.dataset_utils import (
    get_samples_mapping
)


class BartDataset(torch.utils.data.Dataset):
    def __init__(self, name, indexed_dataset, data_prefix,
                 num_epochs, max_num_samples, masked_lm_prob,
                 max_seq_length, short_seq_prob, seed, tokenizer, zh_tokenizer):

        # Params to store.
        self.name = name
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length

        # Dataset.
        self.indexed_dataset = indexed_dataset

        # Build the samples mapping.
        self.samples_mapping = get_samples_mapping(self.indexed_dataset,
                                                   data_prefix,
                                                   num_epochs,
                                                   max_num_samples,
                                                   self.max_seq_length - 3,  # account for added tokens
                                                   short_seq_prob,
                                                   self.seed,
                                                   self.name,
                                                   False)

        # Vocab stuff.
        self.vocab_size = tokenizer.vocab_size
        inv_vocab = {v: k for k, v in tokenizer.vocab.items()}
        self.vocab_id_list = list(inv_vocab.keys())
        self.vocab_id_to_token_dict = inv_vocab
        self.cls_id = tokenizer.cls_token_id
        self.sep_id = tokenizer.sep_token_id
        self.mask_id = tokenizer.mask_token_id
        self.pad_id = tokenizer.pad_token_id
        self.tokenizer = tokenizer

        seg_tokens = ['。', ';', ';', '!', '!', '?', '?']
        seg_token_ids = []
        for t in seg_tokens:
            if t in tokenizer.vocab:
                seg_token_ids.append(tokenizer.vocab[t])
            else:
                print('seg_token "{}" not in vocab'.format(t))
        self.seg_token_ids = set(seg_token_ids)

        self.zh_tokenizer = zh_tokenizer

        # Denoising ratios
        self.permute_sentence_ratio = 1.0
        self.mask_ratio = masked_lm_prob  # 0.15
        self.random_ratio = 0.1
        self.insert_ratio = 0.0
        self.rotate_ratio = 0.0
        self.mask_whole_word = 1
        self.item_transform_func = None

        self.mask_span_distribution = None
        if False:
            _lambda = 3  # Poisson lambda

            lambda_to_the_k = 1
            e_to_the_minus_lambda = math.exp(-_lambda)
            k_factorial = 1
            ps = []
            for k in range(0, 128):
                ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
                lambda_to_the_k *= _lambda
                k_factorial *= k + 1
                if ps[-1] < 0.0000001:
                    break
            ps = torch.FloatTensor(ps)
            self.mask_span_distribution = torch.distributions.Categorical(ps)

    def __len__(self):
        return self.samples_mapping.shape[0]

    def __getitem__(self, idx):
        start_idx, end_idx, seq_length = self.samples_mapping[idx]
        sample = [self.indexed_dataset[i] for i in range(start_idx, end_idx)]
        # Note that this rng state should be numpy and not python since
        # python randint is inclusive whereas the numpy one is exclusive.
        # We % 2**32 since numpy requres the seed to be between 0 and 2**32 - 1
        np_rng = np.random.RandomState(seed=((self.seed + idx) % 2**32))
        return self.build_training_sample(sample, self.max_seq_length, np_rng)

    def build_training_sample(self, sample, max_seq_length, np_rng):
        """Biuld training sample.

        Arguments:
            sample: A list of sentences in which each sentence is a list token ids.
            max_seq_length: Desired sequence length.
            np_rng: Random number genenrator. Note that this rng state should be
                numpy and not python since python randint is inclusive for
                the opper bound whereas the numpy one is exclusive.
        """
        # permute sentences
        full_stops = []
        tokens = [self.cls_id]
        for sent in sample:
            for t in sent:
                token = self.vocab_id_to_token_dict[t]
                if len(re.findall('##[\u4E00-\u9FA5]', token)) > 0:
                    # 兼容erlangshen ##的方式做whole word mask
                    t = self.tokenizer.convert_tokens_to_ids(token[2:])
                tokens.append(t)
                if t in self.seg_token_ids:
                    tokens.append(self.sep_id)
            if tokens[-1] != self.sep_id:
                tokens.append(self.sep_id)

        if len(tokens) > max_seq_length:
            tokens = tokens[:max_seq_length]
            tokens[-1] = self.sep_id
        tokens = torch.LongTensor(tokens)
        full_stops = (tokens == self.sep_id).long()
        assert (max_seq_length - tokens.shape[0]) >= 0, (tokens.size(), tokens[-1], max_seq_length)

        source, target = tokens, tokens[1:].clone()
        use_decoder = 1
        # if torch.rand(1).item() < 0.5:
        #     use_decoder = 0

        if self.permute_sentence_ratio > 0.0 and use_decoder == 1:
            source = self.permute_sentences(source, full_stops, self.permute_sentence_ratio)

        if self.mask_ratio > 0.0:
            replace_length = 1 if use_decoder else -1
            mask_ratio = self.mask_ratio * 2 if use_decoder else self.mask_ratio
            source = self.add_whole_word_mask(source, mask_ratio, replace_length)

        if self.insert_ratio > 0.0:
            raise NotImplementedError
            source = self.add_insertion_noise(source, self.insert_ratio)

        if self.rotate_ratio > 0.0 and np.random.random() < self.rotate_ratio:
            raise NotImplementedError
            source = self.add_rolling_noise(source)

        # there can additional changes to make:
        if self.item_transform_func is not None:
            source, target = self.item_transform_func(source, target)

        assert (source >= 0).all()
        # assert (source[1:-1] >= 1).all()
        assert (source <= self.vocab_size).all()
        assert source[0] == self.cls_id
        assert source[-1] == self.sep_id

        # tokenizer = get_tokenizer()
        # print(' '.join(tokenizer.tokenizer.convert_ids_to_tokens(source)))
        # print(tokenizer.detokenize(target))
        # print(tokenizer.detokenize(source))
        # print()

        prev_output_tokens = torch.zeros_like(target)
        prev_output_tokens[0] = self.sep_id  # match the preprocessing in fairseq
        prev_output_tokens[1:] = target[:-1]

        # src_padding_length = max_seq_length - source.shape[0]
        # tgt_padding_length = max_seq_length - target.shape[0]
        # assert src_padding_length >= 0, (source.size(), source[-1], max_seq_length)
        # assert tgt_padding_length >= 0, (target.size(), target[-1], max_seq_length)
        source_ = torch.full((max_seq_length,), self.pad_id, dtype=torch.long)
        source_[:source.shape[0]] = source
        target_ = torch.full((max_seq_length,), -100, dtype=torch.long)
        # decoder not need bos in the front
        target_[:target.shape[0]] = target
        prev_output_tokens_ = torch.full((max_seq_length,), self.pad_id, dtype=torch.long)
        prev_output_tokens_[:prev_output_tokens.shape[0]] = prev_output_tokens

        return {
            "input_ids": source_,
            "labels": target_,
            # "decoder_input_ids": prev_output_tokens_,
            "attention_mask": (source_ != self.pad_id).long()
        }

    def permute_sentences(self, source, full_stops, p=1.0):
        # Tokens that are full stops, where the previous token is not
        sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2
        result = source.clone()

        num_sentences = sentence_ends.size(0)
        num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0)
        substitutions = torch.randperm(num_sentences)[:num_to_permute]
        ordering = torch.arange(0, num_sentences)
        ordering[substitutions] = substitutions[torch.randperm(num_to_permute)]

        # Ignore <bos> at start
        index = 1
        for i in ordering:
            sentence = source[(sentence_ends[i - 1] if i > 0 else 1): sentence_ends[i]]
            result[index: index + sentence.size(0)] = sentence
            index += sentence.size(0)
        return result

    def word_starts_en(self, source):
        if self.mask_whole_word is not None:
            is_word_start = self.mask_whole_word.gather(0, source)
        else:
            is_word_start = torch.ones(source.size())
        is_word_start[0] = 0
        is_word_start[-1] = 0
        return is_word_start

    def word_starts(self, source):
        if self.mask_whole_word is None:
            is_word_start = torch.ones(source.size())
            is_word_start[0] = 0
            is_word_start[-1] = 0
            return is_word_start
        raw_tokens = [self.vocab_id_to_token_dict[i] for i in source.tolist()]
        words = [raw_tokens[0]] + \
            self.zh_tokenizer(''.join(raw_tokens[1:-1]), HMM=True) + [raw_tokens[-1]]

        def _is_chinese_char(c):
            """Checks whether CP is the #codepoint of a CJK character."""
            # This defines a "chinese character" as anything in the CJK Unicode block:
            #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
            #
            # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
            # despite its name. The modern Korean Hangul alphabet is a different block,
            # as is Japanese Hiragana and Katakana. Those alphabets are used to write
            # space-separated words, so they are not treated specially and handled
            # like the all of the other languages.
            if len(c) > 1:
                return all([_is_chinese_char(c_i) for c_i in c])
            cp = ord(c)
            if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
                (cp >= 0x3400 and cp <= 0x4DBF) or  #
                (cp >= 0x20000 and cp <= 0x2A6DF) or  #
                (cp >= 0x2A700 and cp <= 0x2B73F) or  #
                (cp >= 0x2B740 and cp <= 0x2B81F) or  #
                (cp >= 0x2B820 and cp <= 0x2CEAF) or
                (cp >= 0xF900 and cp <= 0xFAFF) or  #
                    (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
                return True

            return False

        def align_linear(atokens, btokens):
            a2c = []
            c2b = []
            a2b = []
            length = 0
            for tok in atokens:
                a2c.append([length + i for i in range(len(tok))])
                length += len(tok)
            for i, tok in enumerate(btokens):
                c2b.extend([i for _ in range(len(tok))])

            for i, amap in enumerate(a2c):
                bmap = [c2b[ci] for ci in amap]
                a2b.append(list(set(bmap)))
            return a2b

        raw_to_word_align = align_linear(raw_tokens, words)
        is_word_start = torch.zeros(source.size())
        word_starts = []
        skip_cur_word = True
        for i in range(1, len(raw_to_word_align)):
            if raw_to_word_align[i-1] == raw_to_word_align[i]:
                # not a word start, as they align to the same word
                if not skip_cur_word and not _is_chinese_char(raw_tokens[i]):
                    word_starts.pop(-1)
                    skip_cur_word = True
                continue
            else:
                is_word_start[i] = 1
                if _is_chinese_char(raw_tokens[i]):
                    word_starts.append(i)
                    skip_cur_word = False
        is_word_start[0] = 0
        is_word_start[-1] = 0
        word_starts = torch.tensor(word_starts).long().view(-1, 1)
        return is_word_start, word_starts

    def add_whole_word_mask(self, source, p, replace_length=1):
        is_word_start, word_starts = self.word_starts(source)
        num_to_mask_word = int(math.ceil(word_starts.size(0) * p))
        num_to_mask_char = int(math.ceil(word_starts.size(0) * p * 0.1))
        num_to_mask = num_to_mask_word + num_to_mask_char
        if num_to_mask > word_starts.size(0):
            word_starts = is_word_start.nonzero(as_tuple=False)
        num_inserts = 0
        if num_to_mask == 0:
            return source

        if self.mask_span_distribution is not None:
            lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))

            # Make sure we have enough to mask
            cum_length = torch.cumsum(lengths, 0)
            while cum_length[-1] < num_to_mask:
                lengths = torch.cat(
                    [
                        lengths,
                        self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
                    ],
                    dim=0,
                )
                cum_length = torch.cumsum(lengths, 0)

            # Trim to masking budget
            i = 0
            while cum_length[i] < num_to_mask:
                i += 1
            lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
            num_to_mask = i + 1
            lengths = lengths[:num_to_mask]

            # Handle 0-length mask (inserts) separately
            lengths = lengths[lengths > 0]
            num_inserts = num_to_mask - lengths.size(0)
            num_to_mask -= num_inserts
            if num_to_mask == 0:
                return self.add_insertion_noise(source, num_inserts / source.size(0))

            assert (lengths > 0).all()
        else:
            lengths = torch.ones((num_to_mask,)).long()
        assert is_word_start[-1] == 0
        indices = word_starts[
            torch.randperm(word_starts.size(0))[:num_to_mask]
        ].squeeze(1)
        mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio
        source_length = source.size(0)
        assert source_length - 1 not in indices
        to_keep = torch.ones(source_length, dtype=torch.bool)
        is_word_start[
            -1
        ] = 255  # acts as a long length, so spans don't go over the end of doc
        if replace_length == 0:
            to_keep[indices] = 0
        else:
            # keep index, but replace it with [MASK]
            # print(source.size(), word_starts.size(), indices.size(), mask_random.size())
            source[indices] = self.mask_id
            source[indices[mask_random]] = torch.randint(
                1, self.vocab_size, size=(mask_random.sum(),)
            )
            # sorted_indices = torch.sort(indices)[0]
            # continue_mask_pos = ((sorted_indices + 1)[:-1] == sorted_indices[1:])
            # continue_mask_indices = sorted_indices[1:][continue_mask_pos]
            # to_keep[continue_mask_indices] = 0

        # for char indices, we already masked, the following loop handles word mask
        indices = indices[:num_to_mask_word]
        mask_random = mask_random[:num_to_mask_word]
        if self.mask_span_distribution is not None:
            assert len(lengths.size()) == 1
            assert lengths.size() == indices.size()
            lengths -= 1
            while indices.size(0) > 0:
                assert lengths.size() == indices.size()
                lengths -= is_word_start[indices + 1].long()
                uncompleted = lengths >= 0
                indices = indices[uncompleted] + 1
                mask_random = mask_random[uncompleted]
                lengths = lengths[uncompleted]
                if replace_length != -1:
                    # delete token
                    to_keep[indices] = 0
                else:
                    # keep index, but replace it with [MASK]
                    source[indices] = self.mask_id
                    source[indices[mask_random]] = torch.randint(
                        1, self.vocab_size, size=(mask_random.sum(),)
                    )
        else:
            # A bit faster when all lengths are 1
            while indices.size(0) > 0:
                uncompleted = is_word_start[indices + 1] == 0
                indices = indices[uncompleted] + 1
                mask_random = mask_random[uncompleted]
                if replace_length != -1:
                    # delete token
                    to_keep[indices] = 0
                else:
                    # keep index, but replace it with [MASK]
                    source[indices] = self.mask_id
                    source[indices[mask_random]] = torch.randint(
                        1, self.vocab_size, size=(mask_random.sum(),)
                    )

                assert source_length - 1 not in indices

        source = source[to_keep]

        if num_inserts > 0:
            source = self.add_insertion_noise(source, num_inserts / source.size(0))

        return source

    def add_permuted_noise(self, tokens, p):
        num_words = len(tokens)
        num_to_permute = math.ceil(((num_words * 2) * p) / 2.0)
        substitutions = torch.randperm(num_words - 2)[:num_to_permute] + 1
        tokens[substitutions] = tokens[substitutions[torch.randperm(num_to_permute)]]
        return tokens

    def add_rolling_noise(self, tokens):
        offset = np.random.randint(1, max(1, tokens.size(-1) - 1) + 1)
        tokens = torch.cat(
            (tokens[0:1], tokens[offset:-1], tokens[1:offset], tokens[-1:]),
            dim=0,
        )
        return tokens

    def add_insertion_noise(self, tokens, p):
        if p == 0.0:
            return tokens

        num_tokens = len(tokens)
        n = int(math.ceil(num_tokens * p))

        noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
        noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
        noise_mask[noise_indices] = 1
        result = torch.LongTensor(n + len(tokens)).fill_(-1)

        num_random = int(math.ceil(n * self.random_ratio))
        result[noise_indices[num_random:]] = self.mask_id
        result[noise_indices[:num_random]] = torch.randint(
            low=1, high=self.vocab_size, size=(num_random,)
        )

        result[~noise_mask] = tokens

        assert (result >= 0).all()
        return result