Spaces:
Sleeping
Sleeping
HaggiVaggi
commited on
Commit
·
ac6735c
1
Parent(s):
814a159
Update app.py
Browse files
app.py
CHANGED
@@ -64,21 +64,31 @@ if page == "какая-то еще":
|
|
64 |
with torch.no_grad():
|
65 |
outputs = model(**tokens)
|
66 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
67 |
-
return embeddings
|
|
|
|
|
|
|
|
|
68 |
df2 = pd.read_csv('data_with_embeddings.csv')
|
69 |
-
embeddings = pd.read_pickle('embeddings.pkl')
|
|
|
70 |
user_input = st.text_area('Введите описание фильма')
|
71 |
input_embedding = encode_description(user_input)
|
72 |
embeddings_tensor = torch.stack([torch.Tensor(ast.literal_eval(embedding_str)) for embedding_str in df2['description_embedding']]).numpy()
|
73 |
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
64 |
with torch.no_grad():
|
65 |
outputs = model(**tokens)
|
66 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
67 |
+
return embeddings.cpu().numpy().astype('float32')
|
68 |
+
|
69 |
+
embeddings_array = np.load('embeddings.npy')
|
70 |
+
index = faiss.read_index('desc_faiss_index.index')
|
71 |
+
|
72 |
df2 = pd.read_csv('data_with_embeddings.csv')
|
73 |
+
# embeddings = pd.read_pickle('embeddings.pkl')
|
74 |
+
|
75 |
user_input = st.text_area('Введите описание фильма')
|
76 |
input_embedding = encode_description(user_input)
|
77 |
embeddings_tensor = torch.stack([torch.Tensor(ast.literal_eval(embedding_str)) for embedding_str in df2['description_embedding']]).numpy()
|
78 |
|
79 |
+
if st.button("Искать 🔍"):
|
80 |
+
if user_input:
|
81 |
+
# Векторизация введенного запроса
|
82 |
+
input_embedding = encode_description(user_input)
|
83 |
|
84 |
+
# Поиск с использованием Faiss
|
85 |
+
_, sorted_indices = index.search(input_embedding.reshape(1, -1), 10)
|
86 |
|
87 |
+
# Используйте индексы для извлечения строк из DataFrame
|
88 |
+
recs = df.iloc[sorted_indices[0]].reset_index(drop=True)
|
89 |
+
recs.index = recs.index + 1
|
90 |
|
91 |
+
# Вывод рекомендованных фильмов
|
92 |
+
st.write("Рекомендованные фильмы:")
|
93 |
+
st.table(recs[['movie_title', 'description']])
|
94 |
+
|