Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
class VectorQuantizer(nn.Module): | |
""" | |
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py | |
____________________________________________ | |
Discretization bottleneck part of the VQ-VAE. | |
Inputs: | |
- n_e : number of embeddings | |
- e_dim : dimension of embedding | |
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 | |
_____________________________________________ | |
""" | |
def __init__(self, n_e, e_dim, beta): | |
super(VectorQuantizer, self).__init__() | |
self.n_e = n_e | |
self.e_dim = e_dim | |
self.beta = beta | |
self.embedding = nn.Embedding(self.n_e, self.e_dim) | |
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
# better inheritence properties (so that when VectorQuantizer1d() inherits it, only these will be | |
# changed) | |
self.permute_order_in = [0, 2, 3, 1] | |
self.permute_order_out = [0, 3, 1, 2] | |
def forward(self, z): | |
""" | |
Inputs the output of the encoder network z and maps it to a discrete | |
one-hot vector that is the index of the closest embedding vector e_j | |
z (continuous) -> z_q (discrete) | |
2d: z.shape = (batch, channel, height, width) | |
1d: z.shape = (batch, channel, time) | |
quantization pipeline: | |
1. get encoder input 2d: (B,C,H,W) or 1d: (B, C, T) | |
2. flatten input to 2d: (B*H*W,C) or 1d: (B*T, C) | |
""" | |
# reshape z -> (batch, height, width, channel) or (batch, time, channel) and flatten | |
z = z.permute(self.permute_order_in).contiguous() | |
z_flattened = z.view(-1, self.e_dim) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ | |
torch.sum(self.embedding.weight**2, dim=1) - 2 * \ | |
torch.matmul(z_flattened, self.embedding.weight.t()) | |
## could possible replace this here | |
# #\start... | |
# find closest encodings | |
min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) | |
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.n_e).to(z) | |
min_encodings.scatter_(1, min_encoding_indices, 1) | |
# dtype min encodings: torch.float32 | |
# min_encodings shape: torch.Size([2048, 512]) | |
# min_encoding_indices.shape: torch.Size([2048, 1]) | |
# get quantized latent vectors | |
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) | |
#.........\end | |
# with: | |
# .........\start | |
#min_encoding_indices = torch.argmin(d, dim=1) | |
#z_q = self.embedding(min_encoding_indices) | |
# ......\end......... (TODO) | |
# compute loss for embedding | |
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# perplexity | |
e_mean = torch.mean(min_encodings, dim=0) | |
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) | |
# reshape back to match original input shape | |
z_q = z_q.permute(self.permute_order_out).contiguous() | |
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) | |
def get_codebook_entry(self, indices, shape): | |
# shape specifying (batch, height, width, channel) | |
# TODO: check for more easy handling with nn.Embedding | |
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) | |
min_encodings.scatter_(1, indices[:, None], 1) | |
# get quantized latent vectors | |
z_q = torch.matmul(min_encodings.float(), self.embedding.weight) | |
if shape is not None: | |
z_q = z_q.view(shape) | |
# reshape back to match original input shape | |
z_q = z_q.permute(self.permute_order_out).contiguous() | |
return z_q | |
class VectorQuantizer1d(VectorQuantizer): | |
def __init__(self, n_embed, embed_dim, beta=0.25): | |
super().__init__(n_embed, embed_dim, beta) | |
self.permute_order_in = [0, 2, 1] | |
self.permute_order_out = [0, 2, 1] | |
if __name__ == '__main__': | |
quantize = VectorQuantizer1d(n_embed=1024, embed_dim=256, beta=0.25) | |
# 1d Input (features) | |
enc_outputs = torch.rand(6, 256, 53) | |
quant, emb_loss, info = quantize(enc_outputs) | |
print(quant.shape) | |
quantize = VectorQuantizer(n_e=1024, e_dim=256, beta=0.25) | |
# Audio | |
enc_outputs = torch.rand(4, 256, 5, 53) | |
quant, emb_loss, info = quantize(enc_outputs) | |
print(quant.shape) | |
# Image | |
enc_outputs = torch.rand(4, 256, 16, 16) | |
quant, emb_loss, info = quantize(enc_outputs) | |
print(quant.shape) | |