Spaces:
Runtime error
Runtime error
File size: 10,451 Bytes
dc07399 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import torch
from torch.nn import functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch import nn
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from torch.nn import Identity
from transformers.activations import get_activation
import numpy as np
#from torch_scatter import scatter_add
from .utils import input_check, pos_encoding
class classification_model(torch.nn.Module):
def __init__(self, pretrained_model, config, num_classifier=1, num_pos_emb_layer=1, bertsum=False, device=None):
super(classification_model, self).__init__()
self.config = config
self.num_labels = config.num_labels
self.pretrained_model = pretrained_model
if hasattr(config, 'd_model'):
self.pretrained_hidden = config.d_model
elif hasattr(config, 'hidden_size'):
self.pretrained_hidden = config.hidden_size
self.sequence_summary = SequenceSummary(config)
self.bertsum = bertsum
self.device = device
self.return_hidden = False
self.return_hidden_pretrained = False
if self.bertsum:
#self.pooling_1 = GATpooling(self.pretrained_hidden)
#self.fnn_1 = nn.Linear(self.pretrained_hidden, self.pretrained_hidden)
self.pooling_2 = GATpooling(self.pretrained_hidden, self.device)
self.fnn_2 = nn.Linear(self.pretrained_hidden, self.pretrained_hidden)
self.pos_emb_layer = nn.Sequential(*[nn.Linear(self.pretrained_hidden, self.pretrained_hidden) for _ in range(num_pos_emb_layer)])
dim_list = np.linspace(self.pretrained_hidden, config.num_labels, num_classifier+1, dtype=np.int32)
#dim_list = np.linspace(768, config.num_labels, num_classifier+1, dtype=np.int32)
self.classifiers = nn.ModuleList()
for c in range(num_classifier):
self.classifiers.append(nn.Linear(dim_list[c], dim_list[c+1]))
def forward(self, inputs):
hidden_states = None
input_ids = inputs['input_ids']
token_type_ids = inputs['token_type_ids']
attention_mask = inputs['attention_mask']
position = inputs['position']
transformer_inputs = input_check({'input_ids':input_ids, 'token_type_ids':token_type_ids, 'attention_mask':attention_mask}, self.pretrained_model)
pretrianed_output = self.pretrained_model(**transformer_inputs)
output = pretrianed_output[0]
if self.return_hidden_pretrained and self.return_hidden:
hidden_states = pretrianed_output[1]
if self.bertsum:
output = scatter_add(output, inputs['sentence_batch'], dim=-2)
#output = self.pooling_1(output, inputs['sentence_batch'])
#output = self.fnn_1(output)
output = self.pooling_2(output)
output = output.squeeze()
output = self.fnn_2(output)
else:
output = self.sequence_summary(output)
# paragraph positional encoding vector add
pos_emb = pos_encoding(position, self.pretrained_hidden).to(self.device, dtype=torch.float)
output = torch.add(output,pos_emb)
output = self.pos_emb_layer(output)
if self.return_hidden and not self.return_hidden_pretrained:
hidden_states = output
for layer in self.classifiers:
output = layer(output)
logits = output
if 'labels' in inputs.keys():
loss = self.classification_loss_f(inputs, logits)
else:
loss = None
return loss, output, hidden_states
def classification_loss_f(self, inputs, logits):
labels=inputs['labels']
loss=None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
return loss
class GATpooling(nn.Module):
def __init__(self, hidden_size, device=None):
super(GATpooling, self).__init__()
self.gate_nn = nn.Linear(hidden_size, 1)
self.device = device
def forward(self, x, batch=None):
if batch==None:
batch = torch.zeros(x.shape[-2], dtype=torch.long).to(self.device)
gate = self.gate_nn(x)
gate = F.softmax(gate, dim=-1)
out = scatter_add(gate*x, batch, dim=-2)
return out
class SequenceSummary(nn.Module):
r"""
Compute a single vector summary of a sequence hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
config class of your model for the default values it uses):
- **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
- `"last"` -- Take the last token hidden state (like XLNet)
- `"first"` -- Take the first token hidden state (like Bert)
- `"mean"` -- Take the mean of all tokens hidden states
- `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
- `"attn"` -- Not implemented now, use multi-head attention
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
(otherwise to `config.hidden_size`).
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
another string or `None` will add no activation.
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
"""
def __init__(self, config):
super().__init__()
self.summary_type = getattr(config, "summary_type", "mean")
if self.summary_type == "attn":
# We should use a standard multi-head attention module with absolute positional embedding for that.
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
raise NotImplementedError
self.summary = Identity()
if hasattr(config, "summary_use_proj") and config.summary_use_proj:
if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
num_classes = config.num_labels
else:
num_classes = config.hidden_size
self.summary = nn.Linear(config.hidden_size, num_classes)
activation_string = getattr(config, "summary_activation", None)
self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
self.first_dropout = Identity()
if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
self.first_dropout = nn.Dropout(config.summary_first_dropout)
self.last_dropout = Identity()
if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
self.last_dropout = nn.Dropout(config.summary_last_dropout)
def forward(
self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
) -> torch.FloatTensor:
"""
Compute a single vector summary of a sequence hidden states.
Args:
hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
The hidden states of the last layer.
cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Returns:
`torch.FloatTensor`: The summary of the sequence hidden states.
"""
if self.summary_type == "last":
output = hidden_states[:, -1]
elif self.summary_type == "first":
output = hidden_states[:, 0]
elif self.summary_type == "mean":
output = hidden_states.mean(dim=1)
elif self.summary_type == "cls_index":
if cls_index is None:
cls_index = torch.full_like(
hidden_states[..., :1, :],
hidden_states.shape[-2] - 1,
dtype=torch.long,
)
else:
cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size)
elif self.summary_type == "attn":
raise NotImplementedError
output = self.first_dropout(output)
output = self.summary(output)
output = self.activation(output)
output = self.last_dropout(output)
return output
|