Spaces:
Runtime error
Runtime error
File size: 5,113 Bytes
dc07399 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/rnwnsgud1234/0.Files/anaconda3/envs/nlp/lib/python3.9/site-packages/gradio/inputs.py:26: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
" warnings.warn(\n",
"/home/rnwnsgud1234/0.Files/anaconda3/envs/nlp/lib/python3.9/site-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
" warnings.warn(value)\n",
"/home/rnwnsgud1234/0.Files/anaconda3/envs/nlp/lib/python3.9/site-packages/gradio/deprecation.py:40: UserWarning: `numeric` parameter is deprecated, and it has no effect\n",
" warnings.warn(value)\n",
"/home/rnwnsgud1234/0.Files/anaconda3/envs/nlp/lib/python3.9/site-packages/gradio/inputs.py:58: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
" warnings.warn(\n",
"/home/rnwnsgud1234/0.Files/anaconda3/envs/nlp/lib/python3.9/site-packages/gradio/interface.py:359: UserWarning: The `allow_flagging` parameter in `Interface` nowtakes a string value ('auto', 'manual', or 'never'), not a boolean. Setting parameter to: 'never'.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7862\n",
"Running on public URL: https://bd6b9acba15cf888.gradio.app\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co./spaces\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://bd6b9acba15cf888.gradio.app\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 1/1 [00:01<00:00, 1.37s/it]\n",
"100%|ββββββββββ| 1/1 [00:00<00:00, 67.94it/s]\n"
]
}
],
"source": [
"import gradio as gr\n",
"from extraction import paragraph_extract\n",
"\n",
"def predict(paragraphs, positions):\n",
" paragraphs = [paragraphs]\n",
" positions = [positions]\n",
" return extractor(paragraphs, positions)[0]\n",
"\n",
"extractor = paragraph_extract().extract\n",
"\n",
"example_paragraph = 'The W/Zr/HfO2 /TiN structure was fabricated following the scheme shown in the inset of Fig. 1(a). A 5-nm-thick HfO2 layer was deposited on a TiN substrate by an atomic layer deposition system. After HfO2 film deposition, thermal annealing was performed under NH3 at 700βC in order to achieve optimum concentration of oxygen vacancies [10]. Then, the 3-nm-thick Zr top electrode and a 50-nm-thick W capping layer were deposited by RF magnetron sputtering system. The size of the upper electrode was 10Γ10Β ΞΌm2 . The electrical measurements were performed by an Agilent B1500A semiconductor device analyzer, equipped with two pulse generator modules WGFMU (Waveform Generator and Fast Measurement Unit). The coaxial cables with a 50-Ξ© resistance and less than 10 cm in length were used to reduce the parasitic effects.'\n",
"example_position = 4\n",
"\n",
"demo = gr.Interface(fn=predict, inputs=[gr.inputs.Textbox(lines=3, label=\"Paragraphs\", placeholder='Text Here...'), \n",
" gr.inputs.Number(label=\"Positions\")], \n",
" outputs=\"text\", \n",
" title=\"ReRAM Paragraph Classification\", allow_flagging=False,\n",
" examples=[[example_paragraph, example_position]],\n",
" )\n",
"\n",
"demo.launch(share=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.15 ('nlp')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "a0944428a9b48e048108e25849b0259875c53ceed2bb9cda9ef2b8036da8c8e0"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|