import streamlit as st import tensorflow as tf from tensorflow import keras import keras_nlp import PyPDF2 import docx2txt import huggingface_hub # Available backend options are: "jax", "tensorflow", "torch". import os os.environ["KERAS_BACKEND"] = "tensorflow" bart_billsum = keras_nlp.models.BartSeq2SeqLM.from_preset("hf://Grey01/bart_billsum") st.title("SummarizeIt") # File uploader uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt", "docx"]) # Text extraction text = [] if uploaded_file is not None: if uploaded_file.type == "application/pdf": pdf_reader = PyPDF2.PdfReader(uploaded_file) for page in pdf_reader.pages: text += page.extract_text() elif uploaded_file.type == "text/plain": text = uploaded_file.read().decode("utf-8") elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": text = docx2txt.process(uploaded_file) # Text input for direct text entry user_input = st.text_area("Or paste your text here:") if user_input: text.append(user_input) else: text.append(text) # Prioritize user input over file def generate_text(model, input_texts, max_length=500, print_time_taken=False): # Convert input_texts to a list if it's a Dataset chunks = [input_texts[i:i+512] for i in range(0, len(input_texts), 512)] #initialize an empty list to store summaries summaries = [] # generate summaries for each chunk for chunk in chunks: # Assuming your model's generate method can handle a batch of inputs summary = model.generate(input_texts, max_length=max_length) summaries.append(summary) return summary generated_summaries = generate_text( bart_billsum, text, # Pass the list of documents directly ) st.subheader("Generated Summary:") st.write(generated_summaries)