Grey01 commited on
Commit
64e5819
1 Parent(s): fe48816

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -13
app.py CHANGED
@@ -11,7 +11,14 @@ import os
11
  os.environ["KERAS_BACKEND"] = "tensorflow"
12
 
13
 
14
- bart_billsum = keras_nlp.models.BartSeq2SeqLM.from_preset("hf://Grey01/bart_billsum")
 
 
 
 
 
 
 
15
 
16
  st.title("SummarizeIt")
17
 
@@ -19,7 +26,7 @@ st.title("SummarizeIt")
19
  uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt", "docx"])
20
 
21
  # Text extraction
22
- text = []
23
  if uploaded_file is not None:
24
  if uploaded_file.type == "application/pdf":
25
  pdf_reader = PyPDF2.PdfReader(uploaded_file)
@@ -32,20 +39,13 @@ if uploaded_file is not None:
32
  # Text input for direct text entry
33
  user_input = st.text_area("Or paste your text here:")
34
  if user_input:
35
- text.append(user_input)
36
  else:
37
- text.append(text) # Prioritize user input over file
38
 
39
  def generate_text(model, input_texts, max_length=500, print_time_taken=False):
40
- # Convert input_texts to a list if it's a Dataset
41
- chunks = [input_texts[i:i+512] for i in range(0, len(input_texts), 512)]
42
- #initialize an empty list to store summaries
43
- summaries = []
44
- # generate summaries for each chunk
45
- for chunk in chunks:
46
- # Assuming your model's generate method can handle a batch of inputs
47
- summary = model.generate(input_texts, max_length=max_length)
48
- summaries.append(summary)
49
  return summary
50
 
51
  generated_summaries = generate_text(
 
11
  os.environ["KERAS_BACKEND"] = "tensorflow"
12
 
13
 
14
+ preprocessor = keras_nlp.models.BartSeq2SeqLMPreprocessor.from_preset(
15
+ "hf://Grey01/bart_billsum",
16
+ encoder_sequence_length=512,
17
+ decoder_sequence_length=128,
18
+ )
19
+
20
+ bart_billsum = keras_nlp.models.BartSeq2SeqLM.from_preset("hf://Grey01/bart_billsum", preprocessor=preprocessor)
21
+
22
 
23
  st.title("SummarizeIt")
24
 
 
26
  uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt", "docx"])
27
 
28
  # Text extraction
29
+ text = ''
30
  if uploaded_file is not None:
31
  if uploaded_file.type == "application/pdf":
32
  pdf_reader = PyPDF2.PdfReader(uploaded_file)
 
39
  # Text input for direct text entry
40
  user_input = st.text_area("Or paste your text here:")
41
  if user_input:
42
+ text = user_input
43
  else:
44
+ text = text
45
 
46
  def generate_text(model, input_texts, max_length=500, print_time_taken=False):
47
+ summary = model.generate(input_texts, max_length=max_length)
48
+ summaries.append(summary)
 
 
 
 
 
 
 
49
  return summary
50
 
51
  generated_summaries = generate_text(