EdoAbati commited on
Commit
9a6f34b
·
1 Parent(s): aebde11

app basic structure

Browse files
Files changed (1) hide show
  1. app.py +60 -0
app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import gradio as gr
4
+ import requests
5
+ import xmltodict
6
+ from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
7
+ from transformers.pipelines.question_answering import QuestionAnsweringPipeline
8
+
9
+ QA_MODEL_NAME = "ixa-ehu/SciBERT-SQuAD-QuAC"
10
+
11
+
12
+ def clean_text(text: str) -> str:
13
+ text = re.sub("\n", " ", text)
14
+ return text
15
+
16
+
17
+ def get_paper_summary(arxiv_id: str) -> str:
18
+ paper_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
19
+ response = requests.get(paper_url)
20
+ paper_dict = xmltodict.parse(response.content)["feed"]["entry"]
21
+ return clean_text(paper_dict["summary"])
22
+
23
+
24
+ def get_qa_pipeline(qa_model_name: str = QA_MODEL_NAME) -> QuestionAnsweringPipeline:
25
+ tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
26
+ model = AutoModelForQuestionAnswering.from_pretrained(qa_model_name)
27
+ qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
28
+ return qa_pipeline
29
+
30
+
31
+ def get_answer(question: str, context: str) -> str:
32
+ qa_pipeline = get_qa_pipeline()
33
+ prediction = qa_pipeline(question=question, context=context)
34
+ return prediction["answer"]
35
+
36
+
37
+ demo = gr.Blocks()
38
+
39
+
40
+ with demo:
41
+ gr.Markdown("# Document QA")
42
+
43
+ # Retrieve paper
44
+ arxiv_id = gr.Textbox(
45
+ label="arXiv Paper ID", placeholder="Insert here the ID of a paper on arXiv"
46
+ )
47
+ paper_summary = gr.Textbox(label="Paper summary")
48
+ fetch_document_button = gr.Button("Get Summary")
49
+ fetch_document_button.click(
50
+ fn=get_paper_summary, inputs=arxiv_id, outputs=paper_summary
51
+ )
52
+
53
+ # QA on paper
54
+ question = gr.Textbox(label="Ask a question about the paper:")
55
+ answer = gr.Textbox("Answer:")
56
+ ask_button = gr.Button("Ask me 🤖")
57
+ ask_button.click(fn=get_answer, inputs=[question, paper_summary], outputs=answer)
58
+
59
+
60
+ demo.launch()