# -*- coding: utf-8 -*- # file: app.py # time: 17:08 2023/3/6 # author: YANG, HENG (杨恒) # github: https://github.com/yangheng95 # huggingface: https://huggingface.co./yangheng # google scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en # Copyright (C) 2023. All Rights Reserved. import random import autocuda import gradio as gr import pandas as pd from pyabsa import ( download_all_available_datasets, TaskCodeOption, available_checkpoints, ) from pyabsa import ABSAInstruction from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset import requests download_all_available_datasets() def get_atepc_example(dataset): task = TaskCodeOption.Aspect_Polarity_Classification dataset_file = detect_infer_dataset(atepc_dataset_items[dataset], task) for fname in dataset_file: lines = [] if isinstance(fname, str): fname = [fname] for f in fname: print("loading: {}".format(f)) fin = open(f, "r", encoding="utf-8") lines.extend(fin.readlines()) fin.close() for i in range(len(lines)): lines[i] = ( lines[i][: lines[i].find("$LABEL$")] .replace("[B-ASP]", "") .replace("[E-ASP]", "") .strip() ) return sorted(set(lines), key=lines.index) def get_aste_example(dataset): task = TaskCodeOption.Aspect_Sentiment_Triplet_Extraction dataset_file = detect_infer_dataset(aste_dataset_items[dataset], task) for fname in dataset_file: lines = [] if isinstance(fname, str): fname = [fname] for f in fname: print("loading: {}".format(f)) fin = open(f, "r", encoding="utf-8") lines.extend(fin.readlines()) fin.close() return sorted(set(lines), key=lines.index) def get_acos_example(dataset): task = "ACOS" dataset_file = detect_infer_dataset(acos_dataset_items[dataset], task) for fname in dataset_file: lines = [] if isinstance(fname, str): fname = [fname] for f in fname: print("loading: {}".format(f)) fin = open(f, "r", encoding="utf-8") lines.extend(fin.readlines()) fin.close() lines = [line.split("####")[0] for line in lines] return sorted(set(lines), key=lines.index) try: from pyabsa import AspectTermExtraction as ATEPC atepc_dataset_items = { dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList() } atepc_dataset_dict = { dataset.name: get_atepc_example(dataset.name) for dataset in ATEPC.ATEPCDatasetList() } aspect_extractor = ATEPC.AspectExtractor(checkpoint="multilingual") except Exception as e: print(e) atepc_dataset_items = {} atepc_dataset_dict = {} aspect_extractor = None try: from pyabsa import AspectSentimentTripletExtraction as ASTE aste_dataset_items = {dataset.name: dataset for dataset in ASTE.ASTEDatasetList()} aste_dataset_dict = { dataset.name: get_aste_example(dataset.name) for dataset in ASTE.ASTEDatasetList()[:-1] } triplet_extractor = ASTE.AspectSentimentTripletExtractor(checkpoint="multilingual") except Exception as e: print(e) aste_dataset_items = {} aste_dataset_dict = {} triplet_extractor = None try: from pyabsa import ABSAInstruction acos_dataset_items = { dataset.name: dataset for dataset in ABSAInstruction.ACOSDatasetList() } acos_dataset_dict = { dataset.name: get_acos_example(dataset.name) for dataset in ABSAInstruction.ACOSDatasetList() } quadruple_extractor = ABSAInstruction.ABSAGenerator("multilingual") except Exception as e: print(e) acos_dataset_items = {} acos_dataset_dict = {} quadruple_extractor = None def perform_atepc_inference(text, dataset): if not text: text = atepc_dataset_dict[dataset][ random.randint(0, len(atepc_dataset_dict[dataset]) - 1) ] result = aspect_extractor.predict(text, pred_sentiment=True) result = pd.DataFrame( { "aspect": result["aspect"], "sentiment": result["sentiment"], # 'probability': result[0]['probs'], "confidence": [round(x, 4) for x in result["confidence"]], "position": result["position"], } ) return result, "{}".format(text) def perform_aste_inference(text, dataset): if not text: text = aste_dataset_dict[dataset][ random.randint(0, len(aste_dataset_dict[dataset]) - 1) ] result = triplet_extractor.predict(text) pred_triplets = pd.DataFrame(result["Triplets"]) true_triplets = pd.DataFrame(result["True Triplets"]) if result["True Triplets"] else None return pred_triplets, true_triplets, "{}".format(text.split("####")[0]) def perform_acos_inference(text, dataset): if not text: text = acos_dataset_dict[dataset][ random.randint(0, len(acos_dataset_dict[dataset]) - 1) ] raw_output = quadruple_extractor.predict(text.split("####")[0], max_length=128) result = raw_output["Quadruples"] result = pd.DataFrame(result) return result, text def run_demo(text, dataset, task): if len(text) > 3000: raise RuntimeError('Text is too long!') try: data = { "text": text, "dataset": dataset, "task": task, } response = requests.post("https://pyabsa.pagekite.me/api/inference", json=data) result = response.json() print(response.json()) if task == "ATEPC": return ( pd.DataFrame( { "aspect": result["aspect"], "sentiment": result["sentiment"], # 'probability': result[0]['probs'], "confidence": [round(x, 4) for x in result["confidence"]], "position": result["position"], } ), result["text"], ) elif task == "ASTE": return ( pd.DataFrame(result["pred_triplets"]), pd.DataFrame(result["true_triplets"]), result["text"], ) elif task == "ACOS": return pd.DataFrame(result["Quadruples"]), result["text"] except Exception as e: print(e) print("Failed to connect to the server, running locally...") return inference(text, dataset, task) def inference(text, dataset, task): if task == "ATEPC": return perform_atepc_inference(text, dataset) elif task == "ASTE": return perform_aste_inference(text, dataset) elif task == "ACOS": return perform_acos_inference(text, dataset) else: raise Exception("No such task: {}".format(task)) if __name__ == "__main__": demo = gr.Blocks() with demo: with gr.Row(): if quadruple_extractor: with gr.Row(): with gr.Column(): gr.Markdown( "#

ABSA Quadruple Extraction (Experimental)

" ) acos_input_sentence = gr.Textbox( placeholder="Leave this box blank and choose a dataset will give you a random example...", label="Example:", ) acos_dataset_ids = gr.Radio( choices=[ dataset.name for dataset in ABSAInstruction.ACOSDatasetList() ], value="Laptop14", label="Datasets", ) acos_inference_button = gr.Button("Let's go!") acos_output_text = gr.TextArea(label="Example:") acos_output_pred_df = gr.DataFrame(label="Predicted Triplets:") acos_inference_button.click( fn=run_demo, inputs=[ acos_input_sentence, acos_dataset_ids, gr.Text("ACOS", visible=False), ], outputs=[acos_output_pred_df, acos_output_text], ) with gr.Row(): if triplet_extractor: with gr.Column(): gr.Markdown( "#

Aspect Sentiment Triplet Extraction !

" ) with gr.Row(): with gr.Column(): aste_input_sentence = gr.Textbox( placeholder="Leave this box blank and choose a dataset will give you a random example...", label="Example:", ) gr.Markdown( "You can find code and dataset at [ASTE examples](https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_sentiment_triplet_extration)" ) aste_dataset_ids = gr.Radio( choices=[ dataset.name for dataset in ASTE.ASTEDatasetList()[:-1] ], value="Restaurant14", label="Datasets", ) aste_inference_button = gr.Button("Let's go!") aste_output_text = gr.TextArea(label="Example:") aste_output_pred_df = gr.DataFrame( label="Predicted Triplets:" ) aste_output_true_df = gr.DataFrame( label="Original Triplets:" ) aste_inference_button.click( fn=run_demo, inputs=[ aste_input_sentence, aste_dataset_ids, gr.Text("ASTE", visible=False), ], outputs=[ aste_output_pred_df, aste_output_true_df, aste_output_text, ], ) if aspect_extractor: with gr.Column(): gr.Markdown( "#

Multilingual Aspect-based Sentiment Analysis !

" ) with gr.Row(): with gr.Column(): atepc_input_sentence = gr.Textbox( placeholder="Leave this box blank and choose a dataset will give you a random example...", label="Example:", ) gr.Markdown( "You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)" ) atepc_dataset_ids = gr.Radio( choices=[ dataset.name for dataset in ATEPC.ATEPCDatasetList()[:-1] ], value="Laptop14", label="Datasets", ) atepc_inference_button = gr.Button("Let's go!") atepc_output_text = gr.TextArea(label="Example:") atepc_output_df = gr.DataFrame(label="Prediction Results:") atepc_inference_button.click( fn=run_demo, inputs=[ atepc_input_sentence, atepc_dataset_ids, gr.Text("ATEPC", visible=False), ], outputs=[atepc_output_df, atepc_output_text], ) gr.Markdown( """### GitHub Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA) ### Author: [Heng Yang](https://github.com/yangheng95) (杨恒) [![Downloads](https://pepy.tech/badge/pyabsa)](https://pepy.tech/project/pyabsa) [![Downloads](https://pepy.tech/badge/pyabsa/month)](https://pepy.tech/project/pyabsa) """ ) demo.launch()