#!/usr/bin/env python
from __future__ import annotations
import pathlib
import gradio as gr
from model import Model
DESCRIPTION = """# [HairCLIP](https://github.com/wty-ustc/HairCLIP)
"""
def load_hairstyle_list() -> list[str]:
with open("HairCLIP/mapper/hairstyle_list.txt") as f:
lines = [line.strip() for line in f.readlines()]
lines = [line[:-10] for line in lines]
return lines
def set_example_image(example: list) -> dict:
return gr.Image(value=example[0])
def update_step2_components(choice: str) -> tuple[dict, dict]:
return (
gr.Dropdown(visible=choice in ["hairstyle", "both"]),
gr.Textbox(visible=choice in ["color", "both"]),
)
model = Model()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
gr.Markdown("## Step 1")
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label="Input Image", type="filepath")
with gr.Row():
preprocess_button = gr.Button("Preprocess")
with gr.Column():
aligned_face = gr.Image(label="Aligned Face", type="pil", interactive=False)
with gr.Column():
reconstructed_face = gr.Image(label="Reconstructed Face", type="numpy")
latent = gr.State()
with gr.Row():
paths = sorted(pathlib.Path("images").glob("*.jpg"))
gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image)
with gr.Group():
gr.Markdown("## Step 2")
with gr.Row():
with gr.Column():
with gr.Row():
editing_type = gr.Radio(
label="Editing Type", choices=["hairstyle", "color", "both"], value="both", type="value"
)
with gr.Row():
hairstyles = load_hairstyle_list()
hairstyle_index = gr.Dropdown(label="Hairstyle", choices=hairstyles, value="afro", type="index")
with gr.Row():
color_description = gr.Textbox(label="Color", value="red")
with gr.Row():
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Result")
preprocess_button.click(fn=model.detect_and_align_face, inputs=input_image, outputs=aligned_face)
aligned_face.change(fn=model.reconstruct_face, inputs=aligned_face, outputs=[reconstructed_face, latent])
editing_type.change(fn=update_step2_components, inputs=editing_type, outputs=[hairstyle_index, color_description])
run_button.click(
fn=model.generate,
inputs=[
editing_type,
hairstyle_index,
color_description,
latent,
],
outputs=result,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()