Spaces:
Running
Running
diff --git a/models/stylegan2/op/fused_act.py b/models/stylegan2/op/fused_act.py | |
index 973a84f..6854b97 100644 | |
--- a/models/stylegan2/op/fused_act.py | |
+++ b/models/stylegan2/op/fused_act.py | |
import os | |
import torch | |
from torch import nn | |
+from torch.nn import functional as F | |
from torch.autograd import Function | |
from torch.utils.cpp_extension import load | |
-module_path = os.path.dirname(__file__) | |
-fused = load( | |
- 'fused', | |
- sources=[ | |
- os.path.join(module_path, 'fused_bias_act.cpp'), | |
- os.path.join(module_path, 'fused_bias_act_kernel.cu'), | |
- ], | |
-) | |
+#module_path = os.path.dirname(__file__) | |
+#fused = load( | |
+# 'fused', | |
+# sources=[ | |
+# os.path.join(module_path, 'fused_bias_act.cpp'), | |
+# os.path.join(module_path, 'fused_bias_act_kernel.cu'), | |
+# ], | |
+#) | |
class FusedLeakyReLUFunctionBackward(Function): | |
class FusedLeakyReLU(nn.Module): | |
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): | |
- return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) | |
+ if input.device.type == "cpu": | |
+ if bias is not None: | |
+ rest_dim = [1] * (input.ndim - bias.ndim - 1) | |
+ return ( | |
+ F.leaky_relu( | |
+ input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2 | |
+ ) | |
+ * scale | |
+ ) | |
+ | |
+ else: | |
+ return F.leaky_relu(input, negative_slope=0.2) * scale | |
+ | |
+ else: | |
+ return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) | |
diff --git a/models/stylegan2/op/upfirdn2d.py b/models/stylegan2/op/upfirdn2d.py | |
index 7bc5a1e..5465d1a 100644 | |
--- a/models/stylegan2/op/upfirdn2d.py | |
+++ b/models/stylegan2/op/upfirdn2d.py | |
import os | |
import torch | |
+from torch.nn import functional as F | |
from torch.autograd import Function | |
from torch.utils.cpp_extension import load | |
-module_path = os.path.dirname(__file__) | |
-upfirdn2d_op = load( | |
- 'upfirdn2d', | |
- sources=[ | |
- os.path.join(module_path, 'upfirdn2d.cpp'), | |
- os.path.join(module_path, 'upfirdn2d_kernel.cu'), | |
- ], | |
-) | |
+#module_path = os.path.dirname(__file__) | |
+#upfirdn2d_op = load( | |
+# 'upfirdn2d', | |
+# sources=[ | |
+# os.path.join(module_path, 'upfirdn2d.cpp'), | |
+# os.path.join(module_path, 'upfirdn2d_kernel.cu'), | |
+# ], | |
+#) | |
class UpFirDn2dBackward(Function): | |
class UpFirDn2d(Function): | |
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) | |
- out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 | |
- out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 | |
+ out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y | |
+ out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x | |
ctx.out_size = (out_h, out_w) | |
ctx.up = (up_x, up_y) | |
class UpFirDn2d(Function): | |
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): | |
- out = UpFirDn2d.apply( | |
- input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) | |
- ) | |
+ if input.device.type == "cpu": | |
+ out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) | |
+ | |
+ else: | |
+ out = UpFirDn2d.apply( | |
+ input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) | |
+ ) | |
return out | |
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): | |
def upfirdn2d_native( | |
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 | |
): | |
+ _, channel, in_h, in_w = input.shape | |
+ input = input.reshape(-1, in_h, in_w, 1) | |
+ | |
_, in_h, in_w, minor = input.shape | |
kernel_h, kernel_w = kernel.shape | |
def upfirdn2d_native( | |
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, | |
) | |
out = out.permute(0, 2, 3, 1) | |
+ out = out[:, ::down_y, ::down_x, :] | |
+ | |
+ out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y | |
+ out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x | |
- return out[:, ::down_y, ::down_x, :] | |
+ return out.view(-1, channel, out_h, out_w) | |