File size: 6,173 Bytes
00383dc
 
 
 
 
 
 
620dd85
 
f5c5e39
 
 
 
 
620dd85
f5c5e39
 
 
 
 
 
 
0e3c01c
 
f5c5e39
 
 
 
 
00383dc
 
620dd85
00383dc
938fd74
f5c5e39
00383dc
620dd85
 
 
f5c5e39
 
 
 
 
 
 
 
 
00383dc
f5c5e39
 
00383dc
16d15ab
f5c5e39
 
 
 
 
00383dc
 
7386167
 
 
 
 
 
00383dc
 
 
 
 
 
 
 
7386167
db012f2
 
 
00383dc
 
fdbd18a
db012f2
 
 
fdbd18a
db012f2
 
 
 
00383dc
db012f2
 
 
 
 
 
 
 
 
 
00383dc
db012f2
 
 
00383dc
3c88d1c
00383dc
f5c5e39
 
 
 
c32fec2
f5c5e39
 
00383dc
f5c5e39
 
 
 
 
c32fec2
 
 
f5c5e39
c32fec2
f5c5e39
 
 
 
 
 
 
00383dc
f5c5e39
 
00383dc
f5c5e39
 
 
 
 
 
 
 
 
 
 
 
 
 
00383dc
f5c5e39
 
 
00383dc
 
 
 
f5c5e39
 
 
 
 
00383dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from flask import Flask, render_template, request, jsonify
import os
import shutil
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModel

# Ensure HF_TOKEN is set  
HF_TOKEN = os.getenv("HF_TOKEN")  
if not HF_TOKEN:  
    raise ValueError("HF_TOKEN environment variable not set.")  

repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"  
llm_client = InferenceClient(  
    model=repo_id,  
    token=HF_TOKEN,  
)  

# Configure Llama index settings  
Settings.llm = HuggingFaceInferenceAPI(  
    model_name=repo_id,  
    tokenizer_name=repo_id,  
    context_window=3000,  
    token=HF_TOKEN,  
    max_new_tokens=512,  
    generate_kwargs={"temperature": 0.1},  
)  

# Configure embedding model (XLM-RoBERTa model for multilingual support)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="xlm-roberta-base"  # Multilingual support
)

# Configure tokenizer and model for multilingual responses
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
model = AutoModel.from_pretrained("xlm-roberta-base")

PERSIST_DIR = "db"  
PDF_DIRECTORY = 'data'  

# Ensure directories exist  
os.makedirs(PDF_DIRECTORY, exist_ok=True)  
os.makedirs(PERSIST_DIR, exist_ok=True)  
chat_history = []  
current_chat_history = []  

# Data ingestion function
def data_ingestion_from_directory():  
    if os.path.exists(PERSIST_DIR):  
        shutil.rmtree(PERSIST_DIR)  # Remove the persist directory and its contents  
    
    os.makedirs(PERSIST_DIR, exist_ok=True)  
    new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()  
    index = VectorStoreIndex.from_documents(new_documents)  
    index.storage_context.persist(persist_dir=PERSIST_DIR)  

# Function to handle the query and provide a response
def handle_query(query, selected_language):  
    context_str = ""  
    
    # Build context from current chat history  
    for past_query, response in reversed(current_chat_history):  
        if past_query.strip():  
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"  

    # Define the response template based on selected language
    if selected_language == 'telugu':
        language_prompt = "మీరు తాజ్ హోటల్ చాట్‌బాట్, తాజ్ హోటల్ సహాయకుడు."
    elif selected_language == 'hindi':
        language_prompt = "आप ताज होटल चैटबोट हैं, ताज होटल सहायक।"
    else:
        language_prompt = "You are the Taj Hotel chatbot, Taj Hotel Helper."
    
    chat_text_qa_msgs = [
        (
            "user",
            f"""
            {language_prompt}
    
            **Your Role:**
            - Respond accurately and concisely in the user's preferred language (English, Telugu, or Hindi).
            - Provide information about the hotel’s services, amenities, and policies.
    
            **Instructions:**
            - **Context:**  
              {context_str}
            - **User's Question:**  
              {query}
            
            **Response Guidelines:**
            1. **Language Adaptation:** Respond in the language of the question (English, Telugu, or Hindi).
            2. **Tone:** Maintain politeness, professionalism, and the luxury branding of the Taj Hotel.
            3. **Clarity:** Limit responses to 10-15 words for direct and clear communication.
            4. **Knowledge Boundaries:** If unsure of an answer, respond with:
               _"I’m not sure. Please contact our staff for accurate information."_
            5. **Actionable Help:** Offer suggestions or alternative steps to guide the user where applicable.
    
            **Response:** [Your concise response here]
            """
        )
    ]

    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
    # Load the index for querying
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)  
    index = load_index_from_storage(storage_context)  

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)  
    print(f"Querying: {query}")  
    answer = query_engine.query(query)  

    # Extracting the response
    if hasattr(answer, 'response'):  
        response = answer.response  
    elif isinstance(answer, dict) and 'response' in answer:  
        response = answer['response']  
    else:  
        response = "I'm sorry, I couldn't find an answer to that."  

    # Append to chat history  
    current_chat_history.append((query, response))  
    return response

app = Flask(__name__)  

# Data ingestion  
data_ingestion_from_directory()  

# Generate Response  
def generate_response(query, language):  
    try:  
        # Call the handle_query function to get the response  
        bot_response = handle_query(query, language)  
        return bot_response  
    except Exception as e:  
        return f"Error fetching the response: {str(e)}"  

# Route for the homepage  
@app.route('/')  
def index():  
    return render_template('index.html')  

# Route to handle chatbot messages  
@app.route('/chat', methods=['POST'])  
def chat():  
    try:  
        user_message = request.json.get("message")  
        selected_language = request.json.get("language")  # Get selected language from the request
        if not user_message:  
            return jsonify({"response": "Please say something!"})  

        if selected_language not in ['english', 'telugu', 'hindi']:  
            return jsonify({"response": "Invalid language selected."})  

        bot_response = generate_response(user_message, selected_language)  
        return jsonify({"response": bot_response})  
    except Exception as e:  
        return jsonify({"response": f"An error occurred: {str(e)}"})  

if __name__ == '__main__':  
    app.run(debug=True)