Spaces:
Sleeping
Sleeping
File size: 6,173 Bytes
00383dc 620dd85 f5c5e39 620dd85 f5c5e39 0e3c01c f5c5e39 00383dc 620dd85 00383dc 938fd74 f5c5e39 00383dc 620dd85 f5c5e39 00383dc f5c5e39 00383dc 16d15ab f5c5e39 00383dc 7386167 00383dc 7386167 db012f2 00383dc fdbd18a db012f2 fdbd18a db012f2 00383dc db012f2 00383dc db012f2 00383dc 3c88d1c 00383dc f5c5e39 c32fec2 f5c5e39 00383dc f5c5e39 c32fec2 f5c5e39 c32fec2 f5c5e39 00383dc f5c5e39 00383dc f5c5e39 00383dc f5c5e39 00383dc f5c5e39 00383dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
from flask import Flask, render_template, request, jsonify
import os
import shutil
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModel
# Ensure HF_TOKEN is set
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
model=repo_id,
token=HF_TOKEN,
)
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name=repo_id,
tokenizer_name=repo_id,
context_window=3000,
token=HF_TOKEN,
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
# Configure embedding model (XLM-RoBERTa model for multilingual support)
Settings.embed_model = HuggingFaceEmbedding(
model_name="xlm-roberta-base" # Multilingual support
)
# Configure tokenizer and model for multilingual responses
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
model = AutoModel.from_pretrained("xlm-roberta-base")
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
# Data ingestion function
def data_ingestion_from_directory():
if os.path.exists(PERSIST_DIR):
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and its contents
os.makedirs(PERSIST_DIR, exist_ok=True)
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
index = VectorStoreIndex.from_documents(new_documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
# Function to handle the query and provide a response
def handle_query(query, selected_language):
context_str = ""
# Build context from current chat history
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
# Define the response template based on selected language
if selected_language == 'telugu':
language_prompt = "మీరు తాజ్ హోటల్ చాట్బాట్, తాజ్ హోటల్ సహాయకుడు."
elif selected_language == 'hindi':
language_prompt = "आप ताज होटल चैटबोट हैं, ताज होटल सहायक।"
else:
language_prompt = "You are the Taj Hotel chatbot, Taj Hotel Helper."
chat_text_qa_msgs = [
(
"user",
f"""
{language_prompt}
**Your Role:**
- Respond accurately and concisely in the user's preferred language (English, Telugu, or Hindi).
- Provide information about the hotel’s services, amenities, and policies.
**Instructions:**
- **Context:**
{context_str}
- **User's Question:**
{query}
**Response Guidelines:**
1. **Language Adaptation:** Respond in the language of the question (English, Telugu, or Hindi).
2. **Tone:** Maintain politeness, professionalism, and the luxury branding of the Taj Hotel.
3. **Clarity:** Limit responses to 10-15 words for direct and clear communication.
4. **Knowledge Boundaries:** If unsure of an answer, respond with:
_"I’m not sure. Please contact our staff for accurate information."_
5. **Actionable Help:** Offer suggestions or alternative steps to guide the user where applicable.
**Response:** [Your concise response here]
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load the index for querying
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
print(f"Querying: {query}")
answer = query_engine.query(query)
# Extracting the response
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "I'm sorry, I couldn't find an answer to that."
# Append to chat history
current_chat_history.append((query, response))
return response
app = Flask(__name__)
# Data ingestion
data_ingestion_from_directory()
# Generate Response
def generate_response(query, language):
try:
# Call the handle_query function to get the response
bot_response = handle_query(query, language)
return bot_response
except Exception as e:
return f"Error fetching the response: {str(e)}"
# Route for the homepage
@app.route('/')
def index():
return render_template('index.html')
# Route to handle chatbot messages
@app.route('/chat', methods=['POST'])
def chat():
try:
user_message = request.json.get("message")
selected_language = request.json.get("language") # Get selected language from the request
if not user_message:
return jsonify({"response": "Please say something!"})
if selected_language not in ['english', 'telugu', 'hindi']:
return jsonify({"response": "Invalid language selected."})
bot_response = generate_response(user_message, selected_language)
return jsonify({"response": bot_response})
except Exception as e:
return jsonify({"response": f"An error occurred: {str(e)}"})
if __name__ == '__main__':
app.run(debug=True)
|