Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
import re
|
4 |
+
import nltk
|
5 |
+
from nltk.corpus import stopwords
|
6 |
+
from nltk.stem.porter import PorterStemmer
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
import pickle
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
+
|
12 |
+
st.set_page_config(page_title="News Prediction", page_icon=":earth_africa:")
|
13 |
+
|
14 |
+
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification")
|
16 |
+
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification")
|
18 |
+
|
19 |
+
def predict_fake(title,text):
|
20 |
+
input_str = "<title>" + title + "<content>" + text + "<end>"
|
21 |
+
input_ids = tokenizer.encode_plus(input_str, max_length=512, padding="max_length", truncation=True, return_tensors="pt")
|
22 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
23 |
+
model.to(device)
|
24 |
+
with torch.no_grad():
|
25 |
+
output = model(input_ids["input_ids"].to(device), attention_mask=input_ids["attention_mask"].to(device))
|
26 |
+
return dict(zip(["Fake","Real"], [x.item() for x in list(torch.nn.Softmax()(output.logits)[0])] ))
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
# Load the model
|
31 |
+
# news_model = pickle.load(open("fake_news_predictor_model.pkl", "rb"))
|
32 |
+
# vectorizer = pickle.load(open("fakeNews_tfidf_vectorizer.pkl", "rb"))
|
33 |
+
|
34 |
+
# Function for preprocessing input text
|
35 |
+
# def preProcessing(author, title, text):
|
36 |
+
# input_corpus = author +" " + title + " " + text
|
37 |
+
# input_corpus = re.sub('[^a-zA-Z]', ' ', input_corpus)
|
38 |
+
# input_corpus = input_corpus.lower()
|
39 |
+
# input_corpus = input_corpus.split()
|
40 |
+
# ps = PorterStemmer()
|
41 |
+
# input_corpus = [ps.stem(word) for word in input_corpus if not word in set(stopwords.words('english'))]
|
42 |
+
# input_corpus = ' '.join(input_corpus)
|
43 |
+
# return input_corpus
|
44 |
+
|
45 |
+
# # Function to convert text into numerical vector using TF-IDF
|
46 |
+
# def convertIntoVector(X):
|
47 |
+
# # Now converting the textual data into numerical vectors using the initialized TF-IDF vectorizer
|
48 |
+
# X = vectorizer.transform(X)
|
49 |
+
# return X
|
50 |
+
|
51 |
+
def main():
|
52 |
+
|
53 |
+
|
54 |
+
# TO remove streamlit branding and other running animation
|
55 |
+
hide_st_style = """
|
56 |
+
<style>
|
57 |
+
#MainMenu {visibility: hidden;}
|
58 |
+
footer {visibility: hidden;}
|
59 |
+
</style>
|
60 |
+
"""
|
61 |
+
st.markdown(hide_st_style, unsafe_allow_html=True)
|
62 |
+
|
63 |
+
# Spinners
|
64 |
+
bar = st.progress(0)
|
65 |
+
for i in range(101):
|
66 |
+
bar.progress(i)
|
67 |
+
# time.sleep(0.02) # Adjust the sleep time for the desired speed
|
68 |
+
|
69 |
+
# st.balloons()
|
70 |
+
|
71 |
+
# Web content starts
|
72 |
+
# Navbar starts
|
73 |
+
# Create the Streamlit app
|
74 |
+
col1, col2 = st.columns([1, 10])
|
75 |
+
with col1:
|
76 |
+
st.header(" :globe_with_meridians:")
|
77 |
+
with col2:
|
78 |
+
st.header("Fake News Prediction App")
|
79 |
+
|
80 |
+
|
81 |
+
# Initialize NLTK resources
|
82 |
+
nltk.download('stopwords')
|
83 |
+
|
84 |
+
# Create sidebar section for app description and links
|
85 |
+
st.sidebar.title("Find the fake :mag_right:")
|
86 |
+
st.sidebar.write("Welcome the NLP based fake news detector :male-detective:")
|
87 |
+
st.sidebar.write("""
|
88 |
+
|
89 |
+
This web app predicts whether a given news article is real or fake using a logistic regression model trained on a dataset containing 20,000 sample news articles with an impressive accuracy of 96%. The app employs TF-IDF vectorization and NLTK library preprocessing techniques, including lowercase conversion, regular expressions, tokenization, stemming, and merging textual data.
|
90 |
+
|
91 |
+
Skills Enhanced:
|
92 |
+
|
93 |
+
π¬ NLP
|
94 |
+
π» ML
|
95 |
+
π Python
|
96 |
+
π Data Analysis
|
97 |
+
π€ Transformers
|
98 |
+
π€ Hugging face
|
99 |
+
|
100 |
+
|
101 |
+
\nSteps:
|
102 |
+
|
103 |
+
1. Data Acquisition: Obtained a dataset of 20,000 news articles from various sources.\n
|
104 |
+
2. Data Preprocessing: Handled missing values, tokenization, lowercase conversion, stemming, and unified text data.\n
|
105 |
+
3. Data Visualization: Used Matplotlib for heatmaps, correlation, and confusion matrices.\n
|
106 |
+
4. Model Creation: Trained a logistic regression model with TF-IDF vectorization for classification.\n
|
107 |
+
5. Evaluation: Evaluated model performance with accuracy analysis.\n
|
108 |
+
|
109 |
+
By leveraging NLP and ML, this app helps identify false information in news articles, aiding in the fight against misinformation and promoting media literacy.
|
110 |
+
|
111 |
+
**Credits** π\n
|
112 |
+
Coder: Aniket Panchal
|
113 |
+
GitHub: https://github.com/Aniket2021448
|
114 |
+
|
115 |
+
**Contact** π§\n
|
116 |
+
For any inquiries or feedback, please contact [email protected]
|
117 |
+
|
118 |
+
""")
|
119 |
+
st.sidebar.write("Feel free to check out my other apps:")
|
120 |
+
|
121 |
+
|
122 |
+
with st.sidebar.form("app_selection_form"):
|
123 |
+
st.write("Feel free to explore my other apps :eyes:")
|
124 |
+
app_links = {
|
125 |
+
"Movie-mind": "https://movie-mind.streamlit.app/",
|
126 |
+
"Comment-Feel": "https://huggingface.co/spaces/GoodML/Comment-Feel"
|
127 |
+
}
|
128 |
+
selected_app = st.selectbox("Choose an App", list(app_links.keys()))
|
129 |
+
|
130 |
+
submitted_button = st.form_submit_button("Go to App")
|
131 |
+
|
132 |
+
# Handle form submission
|
133 |
+
if submitted_button:
|
134 |
+
selected_app_url = app_links.get(selected_app)
|
135 |
+
if selected_app_url:
|
136 |
+
st.sidebar.success("Redirected successfully!")
|
137 |
+
st.markdown(f'<meta http-equiv="refresh" content="0;URL={selected_app_url}">', unsafe_allow_html=True)
|
138 |
+
|
139 |
+
|
140 |
+
# Dropdown menu for other app links
|
141 |
+
|
142 |
+
st.sidebar.write("In case the apps are down, because of less usage")
|
143 |
+
st.sidebar.write("Kindly reach out to me @ [email protected]")
|
144 |
+
|
145 |
+
|
146 |
+
# Create the form
|
147 |
+
with st.form("news_form"):
|
148 |
+
st.subheader("Enter News Details")
|
149 |
+
# author = st.text_input("Author Name")
|
150 |
+
title = st.text_input("Title")
|
151 |
+
text = st.text_area("Text")
|
152 |
+
submit_button = st.form_submit_button("Submit")
|
153 |
+
|
154 |
+
# Process form submission and make prediction
|
155 |
+
if submit_button:
|
156 |
+
|
157 |
+
# input_text = preProcessing(title, text)
|
158 |
+
# numerical_data = convertIntoVector([input_text])
|
159 |
+
prediction = predict_fake(title, text)
|
160 |
+
# prediction = news_model.predict(numerical_data)
|
161 |
+
|
162 |
+
st.subheader(":loudspeaker:Prediction:")
|
163 |
+
# st.write("Prediction: ", prediction)
|
164 |
+
# st.write("Prediction[0]: ", prediction[0])
|
165 |
+
if prediction[0] == 1:
|
166 |
+
st.write("This news is predicted to be **real**.:muscle:")
|
167 |
+
else:
|
168 |
+
st.write("This news is predicted to be **fake**.:shit:")
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
if __name__ == "__main__":
|
173 |
+
main()
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|