Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
import re | |
import pandas as pd | |
import googleapiclient.discovery | |
import plotly.express as px | |
# Load the BERT tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") | |
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment") | |
# Set up the YouTube API service | |
api_service_name = "youtube" | |
api_version = "v3" | |
DEVELOPER_KEY = "AIzaSyC4Vx8G6nm3Ow9xq7NluTuCCJ1d_5w4YPE" # Replace with your actual API key | |
youtube = googleapiclient.discovery.build(api_service_name, api_version, developerKey=DEVELOPER_KEY) | |
# Function to fetch comments for a video ID | |
def scrape_comments(video_id): | |
request = youtube.commentThreads().list( | |
part="snippet", | |
videoId=video_id, | |
maxResults=100 | |
) | |
response = request.execute() | |
comments = [] | |
for item in response['items']: | |
comment = item['snippet']['topLevelComment']['snippet'] | |
comments.append([ | |
comment['textDisplay'] | |
]) | |
comments_df = pd.DataFrame(comments, columns=['comment']) | |
# df.head(10). | |
return comments_df | |
# Function to fetch video metadata using YouTube API | |
def fetch_video_info(video_id): | |
# video_id = extract_video_id(video_url) | |
request = youtube.videos().list( | |
part="snippet", | |
id=video_id | |
) | |
response = request.execute() | |
if response['items']: | |
video_info = response['items'][0]['snippet'] | |
channel_name = video_info['channelTitle'] | |
video_title = video_info['title'] | |
return channel_name, video_title | |
else: | |
raise ValueError("Video not found") | |
# Function to extract video ID from YouTube URL | |
def extract_video_id(video_url): | |
match = re.search(r'(?<=v=)[\w-]+', video_url) | |
if match: | |
return match.group(0) | |
else: | |
st.error("Invalid YouTube video URL") | |
# Function to fetch YouTube comments for a video ID | |
def fetch_comments(video_id): | |
# Example using youtube-comment-scraper-python library | |
comments_df = scrape_comments(video_id) | |
return comments_df | |
# Function to analyze sentiment for a single comment | |
def analyze_sentiment(comment): | |
tokens = tokenizer.encode(comment, return_tensors="pt", max_length=512, truncation=True) | |
# input_ids = tokens['input_ids'] | |
# attention_mask = tokens['attention_mask'] | |
# result = model(input_ids, attention_mask=attention_mask) | |
result = model(tokens) | |
sentiment_id = torch.argmax(result.logits) + 1 | |
if(sentiment_id > 3): | |
sentiment_label = "Positive" | |
elif(sentiment_id < 3): | |
sentiment_label = "Negative" | |
else: | |
sentiment_label = "Neutral" | |
return sentiment_label | |
def main(): | |
st.title("YouTube Comments Sentiment Analysis") | |
# Create sidebar section for app description and links | |
st.sidebar.title("Comment Feel") | |
st.sidebar.write("Welcome to the YouTube Comments Sentiment Analysis App π₯") | |
st.sidebar.write(""" | |
**Description** π | |
This project utilizes a pre-trained sentiment analysis model based on BERT and TensorFlow to analyze the sentiment of comments from a YouTube video. Users can input a YouTube video URL, fetch related comments, and determine their sentiments (positive, negative, or neutral). | |
Input a valid YouTube video URL in the provided text box π. | |
Click "Extract Comments and Analyze" to fetch comments and analyze sentiments π. | |
View sentiment analysis results via pie and bar charts π. | |
Credits π | |
Coder: Aniket Panchal | |
GitHub: https://github.com/Aniket2021448 | |
Contact π§ | |
For any inquiries or feedback, please contact [email protected] | |
""") | |
st.sidebar.write("Feel free to check out my other apps :eyes:") | |
with st.sidebar.form("app_selection_form"): | |
st.write("Select an App:") | |
app_links = { | |
"Movie-mind": "https://movie-mind.streamlit.app/", | |
"find-fake-news": "https://find-fake-news.streamlit.app/" | |
} | |
selected_app = st.selectbox("Choose an App", list(app_links.keys())) | |
submitted_button = st.form_submit_button("Go to App") | |
# Handle form submission | |
if submitted_button: | |
selected_app_url = app_links.get(selected_app) | |
if selected_app_url: | |
st.sidebar.success("Redirected successfully!") | |
st.markdown(f'<meta http-equiv="refresh" content="0;URL={selected_app_url}">', unsafe_allow_html=True) | |
# Dropdown menu for other app links | |
st.sidebar.write("In case the apps are down, because of less usage") | |
st.sidebar.write("Kindly reach out to me @ [email protected]") | |
st.write("Enter a YouTube video link below: :movie_camera:") | |
video_url = st.text_input("YouTube Video URL:") | |
if st.button("Extract Comments and Analyze"): | |
video_id = extract_video_id(video_url) | |
if video_id: | |
comments_df = fetch_comments(video_id) | |
comments_df['sentiment'] = comments_df['comment'].apply(lambda x: analyze_sentiment(x[:512])) | |
sentiment_counts = comments_df['sentiment'].value_counts() | |
channel_name, video_title = fetch_video_info(video_id) | |
st.write(f"**Channel Name:** {channel_name}") | |
st.write(f"**Video Description:** {video_title}") | |
st.write("Based on top :100: comments from this video") | |
# Create pie chart | |
st.write("Pie chart representation :chart_with_upwards_trend:") | |
fig_pie = px.pie(values=sentiment_counts.values, names=sentiment_counts.index, title='Sentiment Distribution') | |
st.plotly_chart(fig_pie, use_container_width=True) | |
# Create bar chart | |
st.write("Bar plot representation :bar_chart:") | |
fig_bar = px.bar(x=sentiment_counts.index, y=sentiment_counts.values, labels={'x': 'Sentiment', 'y': 'Count'}, title='Sentiment Counts') | |
st.plotly_chart(fig_bar) | |
if __name__ == "__main__": | |
main() | |