Comment-Feel / app.py
GoodML's picture
Update app.py
af653d5 verified
raw
history blame
6.45 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import re
import pandas as pd
import googleapiclient.discovery
import plotly.express as px
# Load the BERT tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
# Set up the YouTube API service
api_service_name = "youtube"
api_version = "v3"
DEVELOPER_KEY = "AIzaSyC4Vx8G6nm3Ow9xq7NluTuCCJ1d_5w4YPE" # Replace with your actual API key
youtube = googleapiclient.discovery.build(api_service_name, api_version, developerKey=DEVELOPER_KEY)
# Function to fetch comments for a video ID
def scrape_comments(video_id):
request = youtube.commentThreads().list(
part="snippet",
videoId=video_id,
maxResults=100
)
response = request.execute()
comments = []
for item in response['items']:
comment = item['snippet']['topLevelComment']['snippet']
comments.append([
comment['textDisplay']
])
comments_df = pd.DataFrame(comments, columns=['comment'])
# df.head(10).
return comments_df
# Function to fetch video metadata using YouTube API
def fetch_video_info(video_id):
# video_id = extract_video_id(video_url)
request = youtube.videos().list(
part="snippet",
id=video_id
)
response = request.execute()
if response['items']:
video_info = response['items'][0]['snippet']
channel_name = video_info['channelTitle']
video_title = video_info['title']
return channel_name, video_title
else:
raise ValueError("Video not found")
# Function to extract video ID from YouTube URL
def extract_video_id(video_url):
match = re.search(r'(?<=v=)[\w-]+', video_url)
if match:
return match.group(0)
else:
st.error("Invalid YouTube video URL")
# Function to fetch YouTube comments for a video ID
def fetch_comments(video_id):
# Example using youtube-comment-scraper-python library
comments_df = scrape_comments(video_id)
return comments_df
# Function to analyze sentiment for a single comment
def analyze_sentiment(comment):
tokens = tokenizer.encode(comment, return_tensors="pt", max_length=512, truncation=True)
# input_ids = tokens['input_ids']
# attention_mask = tokens['attention_mask']
# result = model(input_ids, attention_mask=attention_mask)
result = model(tokens)
sentiment_id = torch.argmax(result.logits) + 1
if(sentiment_id > 3):
sentiment_label = "Positive"
elif(sentiment_id < 3):
sentiment_label = "Negative"
else:
sentiment_label = "Neutral"
return sentiment_label
def main():
st.title("YouTube Comments Sentiment Analysis")
# Create sidebar section for app description and links
st.sidebar.title("Comment Feel")
st.sidebar.write("Welcome to the YouTube Comments Sentiment Analysis App πŸŽ₯")
st.sidebar.write("""
**Description** πŸ“
This project utilizes a pre-trained sentiment analysis model based on BERT and TensorFlow to analyze the sentiment of comments from a YouTube video. Users can input a YouTube video URL, fetch related comments, and determine their sentiments (positive, negative, or neutral).
Input a valid YouTube video URL in the provided text box πŸ”—.
Click "Extract Comments and Analyze" to fetch comments and analyze sentiments πŸ”„.
View sentiment analysis results via pie and bar charts πŸ“Š.
Credits 🌟
Coder: Aniket Panchal
GitHub: https://github.com/Aniket2021448
Contact πŸ“§
For any inquiries or feedback, please contact [email protected]
""")
st.sidebar.write("Feel free to check out my other apps :eyes:")
with st.sidebar.form("app_selection_form"):
st.write("Select an App:")
app_links = {
"Movie-mind": "https://movie-mind.streamlit.app/",
"find-fake-news": "https://find-fake-news.streamlit.app/"
}
selected_app = st.selectbox("Choose an App", list(app_links.keys()))
submitted_button = st.form_submit_button("Go to App")
# Handle form submission
if submitted_button:
selected_app_url = app_links.get(selected_app)
if selected_app_url:
st.sidebar.success("Redirected successfully!")
st.markdown(f'<meta http-equiv="refresh" content="0;URL={selected_app_url}">', unsafe_allow_html=True)
# Dropdown menu for other app links
st.sidebar.write("In case the apps are down, because of less usage")
st.sidebar.write("Kindly reach out to me @ [email protected]")
st.write("Enter a YouTube video link below: :movie_camera:")
video_url = st.text_input("YouTube Video URL:")
if st.button("Extract Comments and Analyze"):
video_id = extract_video_id(video_url)
if video_id:
comments_df = fetch_comments(video_id)
comments_df['sentiment'] = comments_df['comment'].apply(lambda x: analyze_sentiment(x[:512]))
sentiment_counts = comments_df['sentiment'].value_counts()
channel_name, video_title = fetch_video_info(video_id)
st.write(f"**Channel Name:** {channel_name}")
st.write(f"**Video Description:** {video_title}")
st.write("Based on top :100: comments from this video")
# Create pie chart
st.write("Pie chart representation :chart_with_upwards_trend:")
fig_pie = px.pie(values=sentiment_counts.values, names=sentiment_counts.index, title='Sentiment Distribution')
st.plotly_chart(fig_pie, use_container_width=True)
# Create bar chart
st.write("Bar plot representation :bar_chart:")
fig_bar = px.bar(x=sentiment_counts.index, y=sentiment_counts.values, labels={'x': 'Sentiment', 'y': 'Count'}, title='Sentiment Counts')
st.plotly_chart(fig_bar)
if __name__ == "__main__":
main()