########################################################################################### # Code based on the Hugging Face Space of Depth Anything v2 # https://huggingface.co./spaces/depth-anything/Depth-Anything-V2/blob/main/app.py ########################################################################################### import gradio as gr import cv2 import matplotlib import numpy as np import os from PIL import Image import spaces import torch import tempfile from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download from Marigold.marigold import MarigoldPipeline from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel from transformers import CLIPTextModel, CLIPTokenizer css = """ #img-display-container { max-height: 100vh; } #img-display-input { max-height: 80vh; } #img-display-output { max-height: 80vh; } #download { height: 62px; } """ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' dtype = torch.float32 variant = None checkpoint_path = "GonzaloMG/marigold-e2e-ft-depth" unet = UNet2DConditionModel.from_pretrained(checkpoint_path, subfolder="unet") vae = AutoencoderKL.from_pretrained(checkpoint_path, subfolder="vae") text_encoder = CLIPTextModel.from_pretrained(checkpoint_path, subfolder="text_encoder") tokenizer = CLIPTokenizer.from_pretrained(checkpoint_path, subfolder="tokenizer") scheduler = DDIMScheduler.from_pretrained(checkpoint_path, timestep_spacing="trailing", subfolder="scheduler") pipe = MarigoldPipeline.from_pretrained(pretrained_model_name_or_path = checkpoint_path, unet=unet, vae=vae, scheduler=scheduler, text_encoder=text_encoder, tokenizer=tokenizer, variant=variant, torch_dtype=dtype, ) pipe = pipe.to(DEVICE) pipe.unet.eval() title = "# End-to-End Fine-Tuned Marigold for Depth Estimation" description = """ Please refer to our [paper](https://arxiv.org/abs/2409.11355) and [GitHub](https://vision.rwth-aachen.de/diffusion-e2e-ft) for more details.""" @spaces.GPU def predict_depth(image, processing_res_choice): with torch.no_grad(): pipe_out = pipe(image, denoising_steps=1, ensemble_size=1, noise="zeros", normals=False, processing_res=processing_res_choice, match_input_res=True) pred = pipe_out.depth_np pred_colored = pipe_out.depth_colored return pred, pred_colored with gr.Blocks(css=css) as demo: gr.Markdown(title) gr.Markdown(description) gr.Markdown("### Depth Prediction demo") with gr.Row(): input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5) with gr.Row(): submit = gr.Button(value="Compute Depth") processing_res_choice = gr.Radio( [ ("Recommended (768)", 768), ("Native", 0), ], label="Processing resolution", value=768, ) gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",) raw_file = gr.File(label="Raw Depth Data (.npy)", elem_id="download") cmap = matplotlib.colormaps.get_cmap('Spectral_r') def on_submit(image, processing_res_choice): if image is None: print("No image uploaded.") return None pil_image = Image.fromarray(image.astype('uint8')) depth_npy, depth_colored = predict_depth(pil_image, processing_res_choice) # Save the npy data (raw depth map) tmp_npy_depth = tempfile.NamedTemporaryFile(suffix='.npy', delete=False) np.save(tmp_npy_depth.name, depth_npy) # Save the grayscale depth map depth_gray = (depth_npy * 65535.0).astype(np.uint16) tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False) Image.fromarray(depth_gray).save(tmp_gray_depth.name, mode="I;16") # Save the colored depth map tmp_colored_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False) depth_colored.save(tmp_colored_depth.name) return [(image, depth_colored), tmp_gray_depth.name, tmp_npy_depth.name] submit.click(on_submit, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider, gray_depth_file, raw_file]) example_files = os.listdir('assets/examples') example_files.sort() example_files = [os.path.join('assets/examples', filename) for filename in example_files] example_files = [[image, 768] for image in example_files] examples = gr.Examples(examples=example_files, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit) if __name__ == '__main__': demo.queue().launch(share=True)