# import gradio as gr # from googletrans import Translator # import torch # # Initialize Translator # from transformers import pipeline # translator = Translator() # MODEL_NAME = "openai/whisper-base" # device = 0 if torch.cuda.is_available() else "cpu" # pipe = pipeline( # task="automatic-speech-recognition", # model=MODEL_NAME, # chunk_length_s=30, # device=device, # ) # def transcribe_audio(audio): # text = pipe(audio)["text"] # return text # # return translated_text # audio_record = gr.inputs.Audio(source='microphone', label='Record Audio') # output_text = gr.outputs.Textbox(label='Transcription') # interface = gr.Interface(fn=transcribe_audio, inputs=audio_record, outputs=output_text) # interface.launch() import gradio as gr from transformers import pipeline modelo = pipeline("automatic-speech-recognition", model="openai/whisper-base") def transcribe(audio): text = modelo(audio)["text"] return text # Criar a interface Gradio gr.Interface( fn=transcribe, inputs=[gr.Audio(source="microphone", type="filepath")], outputs=["textbox"] ).launch(share=True) # Adicionar o parâmetro share=True para criar um link público