import gradio as gr import os import re import pandas as pd from pathlib import Path from time import sleep from tqdm import tqdm from api_calls import * ROOT_DIR = Path(__file__).resolve().parents[0] def disable_btn(): return gr.Button.update(interactive=False) def enable_btn(): return gr.Button.update(interactive=True) def preview_uploaded_file(file_paths): if file_paths: return gr.update(value=file_paths[0]) else: return gr.update(value=None) def open_data_check(checked): if checked: return gr.update(visible=True) else: return gr.update(visible=False) def uploaded_file_process(file_path, ocr_model_choice): name, filetype = Path(file_path).parts[-1].split(".")[0], Path(file_path).parts[-1].split(".")[-1] print(name) ocr_extracted_data = api_ocr( image_filepath=file_path, model_provider=ocr_model_choice) return ocr_extracted_data def reference_from_file(file_paths, ocr_model_choice="Gemini Pro Vision"): data_array = [] for file_path in tqdm(file_paths): data = uploaded_file_process(file_path, ocr_model_choice=ocr_model_choice) data_array.append(data) sleep(1) return data_array def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) def bot(query, history, data_array, file_paths, qa_prompt_tmpl, checkbox_replace): if data_array: params = {"query": query, "filtered_data": data_array} else: params = {"query": query} if checkbox_replace: params.update({"prompt_template": qa_prompt_tmpl}) if not file_paths or "大台北" in file_paths: func = api_qa_waterfee else: func = api_qa_normal response = func(**params) full_anwser = "" for chunk in response.iter_content(chunk_size=32): if chunk: try: _c = chunk.decode('utf-8') except UnicodeDecodeError: _c = " " full_anwser += _c yield full_anwser # print(_c, flush=True, end="") # for character in response: # full_anwser += character # yield full_anwser def cat_report_explanation(data_array): response = api_qa_cat_report(data_array) full_anwser = "" for chunk in response.iter_content(chunk_size=32): if chunk: try: _c = chunk.decode('utf-8') except UnicodeDecodeError: _c = " " full_anwser += _c yield full_anwser def draw_cat_pain_assessment_result(user_input_image): if user_input_image: json_result = api_model_cat_pain_assessment(user_input_image) print(json_result) total_score = sum(list(json_result.values())) df_result = pd.DataFrame(json_result, index=[0]).T.reset_index() df_result.columns = ["a", "b"] return gr.BarPlot( df_result, x="a", y="b", x_title="Aspects", y_title="Score", title="Cat Pain Assessment", vertical=False, height=400, width=800, tooltip=["a", "b"], y_lim=[0, 2], scale=1, ), gr.HTML( '

Total Score

' f'{total_score}' '/10' ), gr.HTML( '

Explanation

' '

Ear position: 0-2

' '

Orbital tightening: 0-2

' '

Muzzle tension: 0-2

' '

Whiskers change: 0-2

' '

Head position: 0-2

' ) else: return gr.update(value=None) chatbot = gr.Chatbot( [(None, "我是 ESG AI Chat\n有什麼能為您服務的嗎?")], elem_id="chatbot", scale=1, height=700, bubble_full_width=False ) css = """ #examples_file_to_ocr {color: green !important} #center {text-align: center} footer {visibility: hidden} a {color: rgb(255, 206, 10) !important} """ with gr.Blocks(css=css, theme=gr.themes.Monochrome(neutral_hue="green")) as demo: gr.HTML("

GlobalModelAI AI Product Test

Made by `GlobalModelAI Abao`

", elem_id="center") with gr.Tab("OCR + Text2SQL"): with gr.Row(): with gr.Column(): gr.Markdown("## OCR Processing", elem_id="center") ocr_model_choice = gr.Dropdown(label="Model", value="Gemini Pro Vision", choices=["GPT-4", "Gemini Pro Vision"]) file_preview = gr.Image(type="filepath", image_mode="RGB", sources=None, label="File Preview") file_upload = gr.File(label="Upload File", file_types=["png", "jpg", "jpeg", "helc"], file_count='multiple') checkbox_open_data_check = gr.Checkbox(label="Open Data Check") text_data_from_file_check = gr.Textbox(label="File Upload Status", interactive=False, visible=False) gr.Examples( examples=[ [[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-esg_report_table.png"]], [[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-esg_report_table2.png"], [f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-esg_report_table3.png"]], [[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-medical_thesis_table.png"], [f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-medical_thesis_table2.jpg"]], ], inputs=file_upload, outputs=text_data_from_file_check, fn=reference_from_file, cache_examples=True, elem_id="examples_file_to_ocr" ) with gr.Column(): gr.Markdown("## Chat with your data", elem_id="center") with gr.Accordion("Revise Your Prompt", open=False): checkbox_replace = gr.Checkbox(label="Replace with new prompt") qa_prompt_tmpl = gr.Textbox( label="希望用於本次問答的prompt", info="必須使用到的變數:{filtered_data}、{query}", value="", interactive=True, ) chat_interface = gr.ChatInterface( fn=bot, additional_inputs=[text_data_from_file_check, file_upload, qa_prompt_tmpl, checkbox_replace], chatbot=chatbot, ) chatbot.like(print_like_dislike, None, None) with gr.Tab("Cat Pain Assessment Model"): gr.Markdown("## Cat Pain Assessment Model", elem_id="center") with gr.Row(): user_input_image = gr.Image( type="filepath", image_mode="RGB", sources=["upload", "webcam", "clipboard"], label="Upload a cat image") with gr.Column(): cat_pain_assessment_barplot = gr.BarPlot(label="Cat Pain Assessment") cat_pain_assessment_score = gr.HTML(elem_id="center") cat_pain_assessment_explanation = gr.HTML() gr.Examples( examples=[ [f"{ROOT_DIR}/data/cat_pain_detection/fgs_cat_examples/5f2afc_3c44de4afb8345a2a56828e3dd166f41~mv2.jpg"], [f"{ROOT_DIR}/data/cat_pain_detection/fgs_cat_examples/5f2afc_9d9838561cde41d3b2dc9ef079dc2303~mv2.jpg"], [f"{ROOT_DIR}/data/cat_pain_detection/fgs_cat_examples/5f2afc_da95c2a1a3294701a007d34ec02f62a5~mv2.jpg"], ], inputs=user_input_image, outputs=[cat_pain_assessment_barplot, cat_pain_assessment_score, cat_pain_assessment_explanation], fn=draw_cat_pain_assessment_result, cache_examples=True, ) with gr.Tab("Cat Report Explanation"): gr.Markdown("## Cat Report Explanation", elem_id="center") with gr.Row(): with gr.Column(): gr.Markdown("## Report Processing", elem_id="center") catrep_ocr_model_choice = gr.Dropdown(label="Model", value="Gemini Pro Vision", choices=["GPT-4", "Gemini Pro Vision"]) catrep_file_preview = gr.Image(type="filepath", image_mode="RGB", sources=None, label="File Preview") catrep_file_upload = gr.File(label="Upload File", file_types=["png", "jpg", "jpeg", "helc"], file_count='multiple') catrep_button_generation_explanation = gr.Button("Start Explanation") catrep_checkbox_open_data_check = gr.Checkbox(label="Open Data Check") catrep_text_data_from_file_check = gr.Textbox(label="File Upload Status", interactive=False, visible=False) gr.Examples( examples=[ [[f"{ROOT_DIR}/data/image_for_test/screenshot_for_test-cat_report_12.png"]] ], inputs=catrep_file_upload, outputs=catrep_text_data_from_file_check, fn=reference_from_file, cache_examples=True, elem_id="examples_file_to_ocr" ) with gr.Column(): gr.Markdown("### View Explanation", elem_id="center") catrep_textbox_explanation = gr.Textbox( label="Explanation", placeholder="Explanation will show here after you upload image & click the button", interactive=False, ) # Callbacks ## OCR + Text2SQL file_upload.upload( reference_from_file, [file_upload, ocr_model_choice], [text_data_from_file_check] ) file_upload.change( preview_uploaded_file, [file_upload], [file_preview] ) ocr_model_choice.change( reference_from_file, [file_upload, ocr_model_choice], [text_data_from_file_check] ) checkbox_open_data_check.select( open_data_check, [checkbox_open_data_check], [text_data_from_file_check] ) ## Cat Pain Assessment Model user_input_image.change( draw_cat_pain_assessment_result, [user_input_image], [cat_pain_assessment_barplot, cat_pain_assessment_score, cat_pain_assessment_explanation] ) ## Cat Report Explanation catrep_file_upload.upload( reference_from_file, [catrep_file_upload, catrep_ocr_model_choice], [catrep_text_data_from_file_check] ) catrep_file_upload.change( preview_uploaded_file, [catrep_file_upload], [catrep_file_preview] ) catrep_ocr_model_choice.change( reference_from_file, [catrep_file_upload, catrep_ocr_model_choice], [catrep_text_data_from_file_check] ) catrep_checkbox_open_data_check.select( open_data_check, [catrep_checkbox_open_data_check], [catrep_text_data_from_file_check] ) catrep_button_generation_explanation.click( cat_report_explanation, [catrep_text_data_from_file_check], [catrep_textbox_explanation] ) if __name__ == "__main__": demo.queue().launch(max_threads=10)