Spaces:
Running
Running
File size: 10,733 Bytes
e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d 876b065 261016b e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 d75dc6d e0b11c9 8e3f0b6 d75dc6d e0b11c9 8e3f0b6 e0b11c9 d75dc6d e0b11c9 d75dc6d 8e3f0b6 d75dc6d 8e3f0b6 d75dc6d e0b11c9 d75dc6d e0b11c9 8e3f0b6 d75dc6d 8e3f0b6 d75dc6d 8e3f0b6 d75dc6d 8e3f0b6 d75dc6d 8e3f0b6 e0b11c9 d75dc6d e0b11c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# https://huggingface.co./spaces/Glaciohound/LM-Steer
import torch
import nltk
import streamlit as st
import random
import numpy as np
import pandas as pd
from lm_steer.models.get_model import get_model
@st.cache_resource(show_spinner="Loading model...")
def st_get_model(model_name, low_resource_mode):
device = torch.device("cuda:0") if torch.cuda.is_available() \
else torch.device("cpu")
model, tokenizer = get_model(
model_name, "final_layer", "multiply",
4,
1000, 1e-3, 1e-2, low_resource_mode
)
model.to_device(device)
ckpt = torch.load(f"checkpoints/{model_name}.pt", map_location=device)
model.load_state_dict(ckpt[1])
return model, tokenizer
@st.cache_data()
def word_embedding_space_analysis(
model_name, dim):
model = st.session_state.model
tokenizer = st.session_state.tokenizer
projector1 = model.steer.projector1.data[dim]
projector2 = model.steer.projector2.data[dim]
embeddings = model.steer.lm_head.weight
matrix = projector1.matmul(projector2.transpose(0, 1))
S, V, D = torch.linalg.svd(matrix)
data = []
top = 30
select_words = 20
n_dim = 10
for _i in range(n_dim):
left_tokens = embeddings.matmul(D[_i]).argsort()[-top:].flip(0)
right_tokens = embeddings.matmul(D[_i]).argsort()[:top]
def filter_words(side_tokens):
output = []
for t in side_tokens:
word = tokenizer.decode([t])
if (
len(word) > 2 and not word[0].isalpha() and
word[1:].isalpha() and word[1:].lower().islower()
):
word = word[1:]
if word.lower() in nltk.corpus.words.words():
output.append(word)
return output[:select_words]
data.append([
", ".join(filter_words(side_tokens))
for side_tokens in [left_tokens, right_tokens]
])
return pd.DataFrame(
data,
columns=["One Direction", "Another Direction"],
index=[f"Dim {_i}" for _i in range(10)],
)
def main():
# set up the page
random.seed(0)
nltk.download('words')
title = "LM-Steer: Word Embeddings Are Steers for Language Models"
st.set_page_config(
layout="wide",
page_title=title,
page_icon="π",
)
st.title(title)
'''
Live demo for the paper ["**LM-Steer: Word Embeddings Are Steers for
Language Models**"](https://arxiv.org/abs/2305.12798) (**ACL 2024
Outstanding Paper Award**) by Chi Han, Jialiang Xu, Manling Li, Yi Fung,
Chenkai Sun, Nan Jiang, Tarek Abdelzaher, Heng Ji. GitHub repository:
https://github.com/Glaciohound/LM-Steer.
'''
st.subheader("Overview")
st.image('https://raw.githubusercontent.com/Glaciohound/LM-Steer'
'/refs/heads/main/assets/overview_fig.jpg')
'''
Language models (LMs) automatically learn word embeddings during
pre-training on language corpora. Although word embeddings are usually
interpreted as feature vectors for individual words, their roles in
language model generation remain underexplored. In this work, we
theoretically and empirically revisit output word embeddings and find that
their linear transformations are equivalent to steering language model
generation styles. We name such steers LM-Steers and find them existing in
LMs of all sizes. It requires learning parameters equal to 0.2% of the
original LMs' size for steering each style.
'''
# set up the model
st.divider()
st.divider()
st.subheader("Select a model:")
'''
Due to resource limits, we are only able to provide a few models for
steering. You can also refer to the Github repository:
https://github.com/Glaciohound/LM-Steer to host larger models.
Some generated texts may contain toxic or offensive content. Please be
cautious when using the generated texts.
Note that for these smaller models, the generation quality may not be as
good as the larger models (GPT-4, Llama, etc.).
'''
col1, col2 = st.columns(2)
model_name = col1.selectbox(
"Select a model to steer",
[
"gpt2",
"gpt2-medium",
"gpt2-large",
"EleutherAI/pythia-70m",
"EleutherAI/pythia-160m",
"EleutherAI/pythia-410m",
# "EleutherAI/pythia-1b",
# "EleutherAI/pythia-1.4b",
# "EleutherAI/pythia-2.8b",
# "EleutherAI/pythia-6.9b",
# "EleutherAI/gpt-j-6B",
],
)
# low_resource_mode = True if st.session_state.model_name in (
# "EleutherAI/pythia-1.4b", "EleutherAI/pythia-2.8b",
# "EleutherAI/pythia-6.9b", "EleutherAI/gpt-j-6B",
# ) else False
low_resource_mode = False
model, tokenizer = st_get_model(
model_name, low_resource_mode)
st.session_state.model = model
st.session_state.tokenizer = tokenizer
num_param = model.steer.projector1.data.shape[1] ** 2 / 1024 ** 2
total_param = sum(p.numel() for _, p in model.named_parameters()) / \
1024 ** 2
ratio = num_param / total_param
st.write(f"Steered {num_param:.1f}M out of {total_param:.1f}M "
"parameters, ratio: {:.2%}".format(ratio))
# steering
steer_range = 3.
steer_interval = 0.2
st.subheader("Enter a sentence and steer the model")
st.session_state.prompt = st.text_input(
"Enter a prompt",
st.session_state.get("prompt", "My life")
)
col1, col2, col3 = st.columns([2, 2, 1], gap="medium")
sentiment = col1.slider(
"Sentiment (the larger the more positive)",
-steer_range, steer_range, 0.0, steer_interval)
detoxification = col2.slider(
"Detoxification Strength (the larger the less toxic)",
-steer_range, steer_range, 0.0,
steer_interval)
max_length = col3.number_input("Max length", 20, 200, 20, 20)
col1, col2, col3, _ = st.columns(4)
randomness = col2.checkbox("Random sampling", value=False)
if "output" not in st.session_state:
st.session_state.output = ""
if col1.button("Steer and generate!", type="primary"):
if sentiment == 0 and detoxification == 0:
'''
**The steer values are both 0, which means the steered model
is the same as the original model.**
'''
with st.spinner("Generating..."):
steer_values = [detoxification, 0, sentiment, 0]
st.session_state.output = model.generate(
st.session_state.prompt,
steer_values,
seed=None if randomness else 0,
min_length=0,
max_length=max_length,
do_sample=True,
top_p=0.9,
)
st.session_state.analyzed_text = \
st.text_area("Generated text:", st.session_state.output, height=200)
# Analysing the sentence
st.divider()
st.divider()
st.subheader("Analyzing Styled Texts")
'''
LM-Steer also serves as a probe for analyzing the text. It can be used to
analyze the sentiment and detoxification of the text. Now, we proceed and
use LM-Steer to analyze the text in the box above. You can also modify the
text or use your own. Please note that these two dimensions can be
entangled, as a negative sentiment may also detoxify the text.
'''
if st.session_state.get("analyzed_text", "") != "" and \
st.button("Analyze the styled text", type="primary"):
col1, col2 = st.columns(2)
for name, col, dim, color in zip(
["Sentiment", "Detoxification"],
[col1, col2],
[2, 0],
["#ff7f0e", "#1f77b4"],
):
with st.spinner(f"Analyzing {name}..."):
col.subheader(name)
# classification
col.markdown(
"##### Sentence Classification Distribution")
_, dist_list, _ = model.steer_analysis(
st.session_state.analyzed_text,
dim, -steer_range, steer_range,
bins=2*int(steer_range)+1,
)
dist_list = np.array(dist_list)
col.bar_chart(
pd.DataFrame(
{
"Value": dist_list[:, 0],
"Probability": dist_list[:, 1],
}
), x="Value", y="Probability",
color=color,
)
# key tokens
pos_steer, neg_steer = np.zeros((2, 4))
pos_steer[dim] = 1
neg_steer[dim] = -1
_, token_evidence = model.evidence_words(
st.session_state.analyzed_text,
[pos_steer, neg_steer],
)
tokens = tokenizer(st.session_state.analyzed_text).input_ids
tokens = [f"{i:3d}: {tokenizer.decode([t])}"
for i, t in enumerate(tokens)]
col.markdown("##### Token's Evidence Score in the Dimension")
col.write("The polarity of the token's evidence score "
"which aligns with sliding bar directions."
)
col.bar_chart(
pd.DataFrame(
{
"Token": tokens[1:],
"Evidence": token_evidence,
}
), x="Token", y="Evidence",
horizontal=True, color=color,
)
st.divider()
st.divider()
st.subheader("The Word Embeddings Space Analysis")
'''
LM-Steer provides a lens on how word embeddings correlate with LM word
embeddings: what word dimensions contribute to or contrast to a specific
style. This analysis can be used to understand the word embedding space
and how it steers the model's generation.
Note that due to the bidirectional nature of the embedding spaces, in each
dimension, sometimes only one side of the word embeddings is most relevant
to the style (can be either left or right).
'''
for dimension in ["Sentiment", "Detoxification"]:
f'##### {dimension} Dimension'
dim = 2 if dimension == "Sentiment" else 0
analysis_result = word_embedding_space_analysis(
model_name, dim)
with st.expander("Show the analysis results"):
st.table(analysis_result)
if __name__ == "__main__":
main()
|