Spaces:
Sleeping
Sleeping
File size: 14,000 Bytes
0312a01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import logging
import os
import sys
sys.path.append("../")
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.cuda.amp import autocast
from torch.nn import Module
from tqdm import tqdm
from torch.nn.utils.weight_norm import weight_norm
from torch.utils.data import Dataset
LOGGER = logging.getLogger(__name__)
class FusionDTI(nn.Module):
def __init__(self, prot_out_dim, disease_out_dim, args):
super(FusionDTI, self).__init__()
self.fusion = args.fusion
self.drug_reg = nn.Linear(disease_out_dim, 512)
self.prot_reg = nn.Linear(prot_out_dim, 512)
if self.fusion == "CAN":
self.can_layer = CAN_Layer(hidden_dim=512, num_heads=8, args=args)
self.mlp_classifier = MlPdecoder_CAN(input_dim=1024)
elif self.fusion == "BAN":
self.ban_layer = weight_norm(BANLayer(512, 512, 256, 2), name='h_mat', dim=None)
self.mlp_classifier = MlPdecoder_CAN(input_dim=256)
elif self.fusion == "Nan":
self.mlp_classifier_nan = MlPdecoder_CAN(input_dim=1214)
def forward(self, prot_embed, drug_embed, prot_mask, drug_mask):
# print("drug_embed", drug_embed.shape)
if self.fusion == "Nan":
prot_embed = prot_embed.mean(1) # query : [batch_size, hidden]
drug_embed = drug_embed.mean(1) # query : [batch_size, hidden]
joint_embed = torch.cat([prot_embed, drug_embed], dim=1)
score = self.mlp_classifier_nan(joint_embed)
else:
prot_embed = self.prot_reg(prot_embed)
drug_embed = self.drug_reg(drug_embed)
if self.fusion == "CAN":
joint_embed, att = self.can_layer(prot_embed, drug_embed, prot_mask, drug_mask)
elif self.fusion == "BAN":
joint_embed, att = self.ban_layer(prot_embed, drug_embed)
score = self.mlp_classifier(joint_embed)
return score, att
class Pre_encoded(nn.Module):
def __init__(
self, prot_encoder, drug_encoder, args
):
"""Constructor for the model.
Args:
prot_encoder (_type_): Protein sturcture-aware sequence encoder.
drug_encoder (_type_): Drug SFLFIES encoder.
args (_type_): _description_
"""
super(Pre_encoded, self).__init__()
self.prot_encoder = prot_encoder
self.drug_encoder = drug_encoder
def encoding(self, prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask):
# Process inputs through encoders
prot_embed = self.prot_encoder(
input_ids=prot_input_ids, attention_mask=prot_attention_mask, return_dict=True
).logits
# prot_embed = self.prot_reg(prot_embed)
drug_embed = self.drug_encoder(
input_ids=drug_input_ids, attention_mask=drug_attention_mask, return_dict=True
).last_hidden_state # .last_hidden_state
# print("drug_embed", drug_embed.shape)
return prot_embed, drug_embed
class CAN_Layer(nn.Module):
def __init__(self, hidden_dim, num_heads, args):
super(CAN_Layer, self).__init__()
self.agg_mode = args.agg_mode
self.group_size = args.group_size # Control Fusion Scale
self.hidden_dim = hidden_dim
self.num_heads = num_heads
self.head_size = hidden_dim // num_heads
self.query_p = nn.Linear(hidden_dim, hidden_dim, bias=False)
self.key_p = nn.Linear(hidden_dim, hidden_dim, bias=False)
self.value_p = nn.Linear(hidden_dim, hidden_dim, bias=False)
self.query_d = nn.Linear(hidden_dim, hidden_dim, bias=False)
self.key_d = nn.Linear(hidden_dim, hidden_dim, bias=False)
self.value_d = nn.Linear(hidden_dim, hidden_dim, bias=False)
def alpha_logits(self, logits, mask_row, mask_col, inf=1e6):
N, L1, L2, H = logits.shape
mask_row = mask_row.view(N, L1, 1).repeat(1, 1, H)
mask_col = mask_col.view(N, L2, 1).repeat(1, 1, H)
mask_pair = torch.einsum('blh, bkh->blkh', mask_row, mask_col)
logits = torch.where(mask_pair, logits, logits - inf)
alpha = torch.softmax(logits, dim=2)
mask_row = mask_row.view(N, L1, 1, H).repeat(1, 1, L2, 1)
alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha))
return alpha
def apply_heads(self, x, n_heads, n_ch):
s = list(x.size())[:-1] + [n_heads, n_ch]
return x.view(*s)
def group_embeddings(self, x, mask, group_size):
N, L, D = x.shape
groups = L // group_size
x_grouped = x.view(N, groups, group_size, D).mean(dim=2)
mask_grouped = mask.view(N, groups, group_size).any(dim=2)
return x_grouped, mask_grouped
def forward(self, protein, drug, mask_prot, mask_drug):
# Group embeddings before applying multi-head attention
protein_grouped, mask_prot_grouped = self.group_embeddings(protein, mask_prot, self.group_size)
drug_grouped, mask_drug_grouped = self.group_embeddings(drug, mask_drug, self.group_size)
# print("protein_grouped:", protein_grouped.shape)
# print("mask_prot_grouped:", mask_prot_grouped.shape)
# Compute queries, keys, values for both protein and drug after grouping
query_prot = self.apply_heads(self.query_p(protein_grouped), self.num_heads, self.head_size)
key_prot = self.apply_heads(self.key_p(protein_grouped), self.num_heads, self.head_size)
value_prot = self.apply_heads(self.value_p(protein_grouped), self.num_heads, self.head_size)
query_drug = self.apply_heads(self.query_d(drug_grouped), self.num_heads, self.head_size)
key_drug = self.apply_heads(self.key_d(drug_grouped), self.num_heads, self.head_size)
value_drug = self.apply_heads(self.value_d(drug_grouped), self.num_heads, self.head_size)
# Compute attention scores
logits_pp = torch.einsum('blhd, bkhd->blkh', query_prot, key_prot)
logits_pd = torch.einsum('blhd, bkhd->blkh', query_prot, key_drug)
logits_dp = torch.einsum('blhd, bkhd->blkh', query_drug, key_prot)
logits_dd = torch.einsum('blhd, bkhd->blkh', query_drug, key_drug)
# print("logits_pp:", logits_pp.shape)
alpha_pp = self.alpha_logits(logits_pp, mask_prot_grouped, mask_prot_grouped)
alpha_pd = self.alpha_logits(logits_pd, mask_prot_grouped, mask_drug_grouped)
alpha_dp = self.alpha_logits(logits_dp, mask_drug_grouped, mask_prot_grouped)
alpha_dd = self.alpha_logits(logits_dd, mask_drug_grouped, mask_drug_grouped)
prot_embedding = (torch.einsum('blkh, bkhd->blhd', alpha_pp, value_prot).flatten(-2) +
torch.einsum('blkh, bkhd->blhd', alpha_pd, value_drug).flatten(-2)) / 2
drug_embedding = (torch.einsum('blkh, bkhd->blhd', alpha_dp, value_prot).flatten(-2) +
torch.einsum('blkh, bkhd->blhd', alpha_dd, value_drug).flatten(-2)) / 2
# print("prot_embedding:", prot_embedding.shape)
# Continue as usual with the aggregation mode
if self.agg_mode == "cls":
prot_embed = prot_embedding[:, 0] # query : [batch_size, hidden]
drug_embed = drug_embedding[:, 0] # query : [batch_size, hidden]
elif self.agg_mode == "mean_all_tok":
prot_embed = prot_embedding.mean(1) # query : [batch_size, hidden]
drug_embed = drug_embedding.mean(1) # query : [batch_size, hidden]
elif self.agg_mode == "mean":
prot_embed = (prot_embedding * mask_prot_grouped.unsqueeze(-1)).sum(1) / mask_prot_grouped.sum(-1).unsqueeze(-1)
drug_embed = (drug_embedding * mask_drug_grouped.unsqueeze(-1)).sum(1) / mask_drug_grouped.sum(-1).unsqueeze(-1)
else:
raise NotImplementedError()
# print("prot_embed:", prot_embed.shape)
query_embed = torch.cat([prot_embed, drug_embed], dim=1)
att = torch.zeros(1, 1, 1024, 1024)
att[:, :, :512, :512] = alpha_pp.mean(dim=-1) # Protein to Protein
att[:, :, :512, 512:] = alpha_pd.mean(dim=-1) # Protein to Drug
att[:, :, 512:, :512] = alpha_dp.mean(dim=-1) # Drug to Protein
att[:, :, 512:, 512:] = alpha_dd.mean(dim=-1) # Drug to Drug
# print("query_embed:", query_embed.shape)
return query_embed, att
class MlPdecoder_CAN(nn.Module):
def __init__(self, input_dim):
super(MlPdecoder_CAN, self).__init__()
self.fc1 = nn.Linear(input_dim, input_dim)
self.bn1 = nn.BatchNorm1d(input_dim)
self.fc2 = nn.Linear(input_dim, input_dim // 2)
self.bn2 = nn.BatchNorm1d(input_dim // 2)
self.fc3 = nn.Linear(input_dim // 2, input_dim // 4)
self.bn3 = nn.BatchNorm1d(input_dim // 4)
self.output = nn.Linear(input_dim // 4, 1)
def forward(self, x):
x = self.bn1(torch.relu(self.fc1(x)))
x = self.bn2(torch.relu(self.fc2(x)))
x = self.bn3(torch.relu(self.fc3(x)))
x = torch.sigmoid(self.output(x))
return x
class MLPdecoder_BAN(nn.Module):
def __init__(self, in_dim, hidden_dim, out_dim, binary=1):
super(MLPdecoder_BAN, self).__init__()
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.bn1 = nn.BatchNorm1d(hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.bn2 = nn.BatchNorm1d(hidden_dim)
self.fc3 = nn.Linear(hidden_dim, out_dim)
self.bn3 = nn.BatchNorm1d(out_dim)
self.fc4 = nn.Linear(out_dim, binary)
def forward(self, x):
x = self.bn1(F.relu(self.fc1(x)))
x = self.bn2(F.relu(self.fc2(x)))
x = self.bn3(F.relu(self.fc3(x)))
# x = self.fc4(x)
x = torch.sigmoid(self.fc4(x))
return x
class BANLayer(nn.Module):
""" Bilinear attention network
Modified from https://github.com/peizhenbai/DrugBAN/blob/main/ban.py
"""
def __init__(self, v_dim, q_dim, h_dim, h_out, act='ReLU', dropout=0.2, k=3):
super(BANLayer, self).__init__()
self.c = 32
self.k = k
self.v_dim = v_dim
self.q_dim = q_dim
self.h_dim = h_dim
self.h_out = h_out
self.v_net = FCNet([v_dim, h_dim * self.k], act=act, dropout=dropout)
self.q_net = FCNet([q_dim, h_dim * self.k], act=act, dropout=dropout)
# self.dropout = nn.Dropout(dropout[1])
if 1 < k:
self.p_net = nn.AvgPool1d(self.k, stride=self.k)
if h_out <= self.c:
self.h_mat = nn.Parameter(torch.Tensor(1, h_out, 1, h_dim * self.k).normal_())
self.h_bias = nn.Parameter(torch.Tensor(1, h_out, 1, 1).normal_())
else:
self.h_net = weight_norm(nn.Linear(h_dim * self.k, h_out), dim=None)
self.bn = nn.BatchNorm1d(h_dim)
def attention_pooling(self, v, q, att_map):
fusion_logits = torch.einsum('bvk,bvq,bqk->bk', (v, att_map, q))
if 1 < self.k:
fusion_logits = fusion_logits.unsqueeze(1) # b x 1 x d
fusion_logits = self.p_net(fusion_logits).squeeze(1) * self.k # sum-pooling
return fusion_logits
def forward(self, v, q, softmax=False):
v_num = v.size(1)
q_num = q.size(1)
# print("v_num", v_num)
# print("v_num ", v_num)
if self.h_out <= self.c:
v_ = self.v_net(v)
q_ = self.q_net(q)
# print("v_", v_.shape)
# print("q_ ", q_.shape)
att_maps = torch.einsum('xhyk,bvk,bqk->bhvq', (self.h_mat, v_, q_)) + self.h_bias
# print("Attention map_1",att_maps.shape)
else:
v_ = self.v_net(v).transpose(1, 2).unsqueeze(3)
q_ = self.q_net(q).transpose(1, 2).unsqueeze(2)
d_ = torch.matmul(v_, q_) # b x h_dim x v x q
att_maps = self.h_net(d_.transpose(1, 2).transpose(2, 3)) # b x v x q x h_out
att_maps = att_maps.transpose(2, 3).transpose(1, 2) # b x h_out x v x q
# print("Attention map_2",att_maps.shape)
if softmax:
p = nn.functional.softmax(att_maps.view(-1, self.h_out, v_num * q_num), 2)
att_maps = p.view(-1, self.h_out, v_num, q_num)
# print("Attention map_softmax", att_maps.shape)
logits = self.attention_pooling(v_, q_, att_maps[:, 0, :, :])
for i in range(1, self.h_out):
logits_i = self.attention_pooling(v_, q_, att_maps[:, i, :, :])
logits += logits_i
logits = self.bn(logits)
return logits, att_maps
class FCNet(nn.Module):
"""Simple class for non-linear fully connect network
Modified from https://github.com/jnhwkim/ban-vqa/blob/master/fc.py
"""
def __init__(self, dims, act='ReLU', dropout=0):
super(FCNet, self).__init__()
layers = []
for i in range(len(dims) - 2):
in_dim = dims[i]
out_dim = dims[i + 1]
if 0 < dropout:
layers.append(nn.Dropout(dropout))
layers.append(weight_norm(nn.Linear(in_dim, out_dim), dim=None))
if '' != act:
layers.append(getattr(nn, act)())
if 0 < dropout:
layers.append(nn.Dropout(dropout))
layers.append(weight_norm(nn.Linear(dims[-2], dims[-1]), dim=None))
if '' != act:
layers.append(getattr(nn, act)())
self.main = nn.Sequential(*layers)
def forward(self, x):
return self.main(x)
class BatchFileDataset_Case(Dataset):
def __init__(self, file_list):
self.file_list = file_list
def __len__(self):
return len(self.file_list)
def __getitem__(self, idx):
batch_file = self.file_list[idx]
data = torch.load(batch_file)
return data['prot'], data['drug'], data['prot_ids'], data['drug_ids'], data['prot_mask'], data['drug_mask'], data['y'] |