Gilvan commited on
Commit
1767d02
·
1 Parent(s): 2eadd76

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -15,8 +15,6 @@ def predict_step(image_paths, model):
15
  i_image = Image.open(image_path)
16
  if i_image.mode != "RGB":
17
  i_image = i_image.convert(mode="RGB")
18
-
19
- #i_image.resize((640, 480))
20
 
21
  images.append(i_image)
22
 
@@ -69,9 +67,9 @@ def predict_step_pixel(dataset_pixel_values, model):
69
  """
70
  def load_image2txt_model(image_model_name):
71
  model = VisionEncoderDecoderModel.from_pretrained(image_model_name)
72
- feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-large-patch4-window7-224")
73
 
74
- tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
75
  tokenizer.pad_token = tokenizer.eos_token
76
 
77
  model = model.to(device)
@@ -81,7 +79,6 @@ def inference_image_pipe(image_input):
81
  image_model_name = "./checkpoint-21000"
82
 
83
  tokenizer, feature_extractor, image_model = load_image2txt_model(image_model_name)
84
- #with autocast('cpu'):
85
  text = predict_step_single_image(image_input, tokenizer, feature_extractor, image_model)[0]
86
  return text
87
 
@@ -89,7 +86,7 @@ with gr.Interface(fn=inference_image_pipe,
89
  inputs=gr.Image(shape=(256, 256)),
90
  outputs="text",
91
  examples=["3212210S4492629-1.png", "3216497S4499373-1.png"]) as demo:
92
- gr.Markdown("POC V0 - XRay Automatic Medical Report")
93
 
94
 
95
  if __name__ == "__main__":
 
15
  i_image = Image.open(image_path)
16
  if i_image.mode != "RGB":
17
  i_image = i_image.convert(mode="RGB")
 
 
18
 
19
  images.append(i_image)
20
 
 
67
  """
68
  def load_image2txt_model(image_model_name):
69
  model = VisionEncoderDecoderModel.from_pretrained(image_model_name)
70
+ feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-large-patch4-window7-224", use_auth_token=auth_token)
71
 
72
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2", use_auth_token=auth_token)
73
  tokenizer.pad_token = tokenizer.eos_token
74
 
75
  model = model.to(device)
 
79
  image_model_name = "./checkpoint-21000"
80
 
81
  tokenizer, feature_extractor, image_model = load_image2txt_model(image_model_name)
 
82
  text = predict_step_single_image(image_input, tokenizer, feature_extractor, image_model)[0]
83
  return text
84
 
 
86
  inputs=gr.Image(shape=(256, 256)),
87
  outputs="text",
88
  examples=["3212210S4492629-1.png", "3216497S4499373-1.png"]) as demo:
89
+ gr.Markdown("POC XRaySwinGen - Automatic Medical Report")
90
 
91
 
92
  if __name__ == "__main__":