import os from huggingface_hub import login import torch from transformers import pipeline import gradio as gr # Set the Hugging Face token from the environment variable hf_token = os.getenv("HF_TOKEN") if hf_token is None: raise ValueError("Hugging Face token is not set in the environment variable.") # Log in to Hugging Face with the token login(token=hf_token) # Define the model ID model_id = "meta-llama/Llama-3.2-1B-Instruct" # Load the pipeline with the model pipe = pipeline( "text-classification", model=model_id, torch_dtype=torch.bfloat16, device_map="auto" ) # Define custom labels for classification pipe.model.config.id2label = {0: 'greeting', 1: 'farewell', 2: 'other'} # Function to classify input text def classify_text(text): result = pipe(text) return result[0]['label'] # Create Gradio interface iface = gr.Interface( fn=classify_text, # Function to be called inputs=gr.Textbox(label="Enter Text"), # Textbox input for user outputs=gr.Label(label="Classification"), # Output label showing classification title="Text Classifier", # Title of the app description="Classify your text as 'greeting', 'farewell', or 'other'." # Description of the app ) # Launch the Gradio app iface.launch()