Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,21 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import pipeline
|
3 |
import gradio as gr
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
model_id = "meta-llama/Llama-3.2-1B-Instruct"
|
7 |
|
|
|
8 |
pipe = pipeline(
|
9 |
"text-classification",
|
10 |
model=model_id,
|
@@ -12,22 +23,22 @@ pipe = pipeline(
|
|
12 |
device_map="auto"
|
13 |
)
|
14 |
|
15 |
-
#
|
16 |
pipe.model.config.id2label = {0: 'greeting', 1: 'farewell', 2: 'other'}
|
17 |
|
18 |
-
#
|
19 |
def classify_text(text):
|
20 |
result = pipe(text)
|
21 |
return result[0]['label']
|
22 |
|
23 |
-
#
|
24 |
iface = gr.Interface(
|
25 |
-
fn=classify_text,
|
26 |
-
inputs=gr.Textbox(label="
|
27 |
-
outputs=gr.Label(label="
|
28 |
-
title="
|
29 |
-
description="
|
30 |
)
|
31 |
|
32 |
-
#
|
33 |
-
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import login
|
3 |
import torch
|
4 |
from transformers import pipeline
|
5 |
import gradio as gr
|
6 |
|
7 |
+
# Set the Hugging Face token from the environment variable
|
8 |
+
hf_token = os.getenv("HF_TOKEN")
|
9 |
+
if hf_token is None:
|
10 |
+
raise ValueError("Hugging Face token is not set in the environment variable.")
|
11 |
+
|
12 |
+
# Log in to Hugging Face with the token
|
13 |
+
login(token=hf_token)
|
14 |
+
|
15 |
+
# Define the model ID
|
16 |
model_id = "meta-llama/Llama-3.2-1B-Instruct"
|
17 |
|
18 |
+
# Load the pipeline with the model
|
19 |
pipe = pipeline(
|
20 |
"text-classification",
|
21 |
model=model_id,
|
|
|
23 |
device_map="auto"
|
24 |
)
|
25 |
|
26 |
+
# Define custom labels for classification
|
27 |
pipe.model.config.id2label = {0: 'greeting', 1: 'farewell', 2: 'other'}
|
28 |
|
29 |
+
# Function to classify input text
|
30 |
def classify_text(text):
|
31 |
result = pipe(text)
|
32 |
return result[0]['label']
|
33 |
|
34 |
+
# Create Gradio interface
|
35 |
iface = gr.Interface(
|
36 |
+
fn=classify_text, # Function to be called
|
37 |
+
inputs=gr.Textbox(label="Enter Text"), # Textbox input for user
|
38 |
+
outputs=gr.Label(label="Classification"), # Output label showing classification
|
39 |
+
title="Text Classifier", # Title of the app
|
40 |
+
description="Classify your text as 'greeting', 'farewell', or 'other'." # Description of the app
|
41 |
)
|
42 |
|
43 |
+
# Launch the Gradio app
|
44 |
+
iface.launch()
|