import gradio as gr import pandas as pd import Generate import plotly.express as px example_df_aircomp=pd.read_csv('data/aircompressordata.csv') example_df_ener=pd.read_csv('data/energymeter.csv') example_df_boiler=pd.read_csv('data/Boiler1.csv') demo=gr.Blocks(title="EcoForecast") def pred_air(date): preds=Generate.inference_Aircomp(date,example_df_aircomp) return preds def pred_ener(date): preds=Generate.inference_Energy(date,example_df_ener) return preds def pred_boiler(date): preds=Generate.inference_boiler(date,example_df_boiler) return preds def upload_file(files): file_paths = [file.name for file in files] return file_paths with demo: gr.Markdown("Tool for predicting the next seven days of data in the future using the last 200 points of data incoming") with gr.Tabs(): with gr.TabItem("Air compressor data"): with gr.Row(): Air_input=gr.Text(placeholder="Enter date and like the example only",show_label=False) air_dataframe_input=gr.Dataframe(example_df_aircomp.head(100)) Air_dataframe_output=gr.Dataframe() with gr.Column(): Aircomp_output_btn=gr.Button("Forecast") Air_plot_forecast=gr.Button("Plot") Air_plots=gr.Plot() with gr.TabItem("Energymeter data"): with gr.Row(): ener_input=gr.Text(placeholder="Enter the date and time in example format only",show_label=False) ener_dataframe_input=gr.Dataframe(example_df_ener.head(100)) Ener_dataframe_output=gr.Dataframe() with gr.Column(): Energy_output_btn=gr.Button("Forecast") Ener_plot_forecast=gr.Button("Plot") Ener_plots=gr.Plot() with gr.TabItem("Boiler data"): with gr.Row(): boiler_input=gr.Text(placeholder="Enter the date and time in example format only",show_label=False) boiler_dataframe_input=gr.Dataframe(example_df_boiler.head(100)) boiler_dataframe_output=gr.Dataframe() with gr.Column(): Boiler_output_btn=gr.Button("Forecast") boiler_plot_forecast=gr.Button("Plot") boil_plots=gr.Plot() with gr.TabItem("Upload data"): file_output = gr.File() upload_button = gr.UploadButton("Click to Upload a File", file_types=["csv"], file_count="multiple") upload_button.upload(upload_file, upload_button, file_output) def plotg_air(dataframe): fig=px.line(dataframe,x='timestamp',y=dataframe.columns, hover_data={"timestamp":"|%B %d, %Y"}, title="Predictions") fig.update_xaxes( dtick="D1", tickformat="%b\n%Y" ) return fig def plotg_ener(dataframe): fig=px.line(dataframe,x='parameter_timestamp',y=dataframe.columns, hover_data={"parameter_timestamp":"|%B %d, %Y"}, title="Predictions") fig.update_xaxes( dtick="D1", tickformat="%b\n%Y" ) return fig def plotg_boiler(dataframe): fig=px.line(dataframe,x='DateString',y=dataframe.columns, hover_data={"DateString":"|%B %d, %Y"}, title="Predictions") fig.update_xaxes( dtick="D1", tickformat="%b\n%Y" ) return fig Aircomp_output_btn.click(pred_air,inputs=Air_input,outputs=Air_dataframe_output) Energy_output_btn.click(pred_ener,inputs=ener_input,outputs=Ener_dataframe_output) Boiler_output_btn.click(pred_boiler,inputs=boiler_input,outputs=boiler_dataframe_output) Air_plot_forecast.click(plotg_air,inputs=Air_dataframe_output,outputs=Air_plots) Ener_plot_forecast.click(plotg_ener,inputs=Ener_dataframe_output,outputs=Ener_plots) boiler_plot_forecast.click(plotg_boiler,inputs=boiler_dataframe_output,outputs=boil_plots) demo.launch(share=True)