import sklearn import pandas as pd from tsai.basics import * import config from tsai.inference import load_learner import pandas as pd import platform import pathlib plt=platform.system() if plt=='Linux': pathlib.WindowsPath=pathlib.PosixPath def get_inputs_from_user(): return 0 def preprocess_data(DataFrame:pd.DataFrame): preproc=load_object() return DataFrame def preprocess_data_transform_generate_splits_Train(DataFrame:pd.DataFrame): DataFrame=DataFrame.drop(config.DROP_COLOUMNS,axis=1) preproc_pipe=load_object(config.PREPROCESSOR_PATH) exp_pipe=load_object(config.SCALING_DATA) DataFrame=preproc_pipe.fit_transform(DataFrame) print("dataframe processed and ready for splitting") splits=get_forecasting_splits(DataFrame,fcst_history=config.FCST_HISTORY,fcst_horizon=config.FCST_HORIZON,datetime_col=config.DATETIME_COL, valid_size=config.VALID_SIZE,test_size=config.TEST_SIZE) X,y=prepare_forecasting_data(DataFrame,fcst_history=config.FCST_HISTORY,fcst_horizon=config.FCST_HORIZON,x_vars=config.COLOUMNS,y_vars=config.COLOUMNS) learn=TSForecaster(X,y,splits=splits, batch_size=16,path='models', arch='InceptionTimePlus',#"PatchTST" when PatchTST is to be used pipelines=[preproc_pipe,exp_pipe], #arch_config=config.ARCH_CONFIG, #uncomment only if PatchTST is used metrics=[mse,mape], cbs=ShowGraph() ) lr_max=learn.lr_find().valley learn.fit_one_cycle(n_epoch=config.N_EPOCH,lr_max=lr_max) learn.export("model_in.pt") return 0 #when using PatchTst model use the below function def inference_Aircomp(fcst_date:string,DataFrame:pd.DataFrame): pre=load_object(config.AIR_PREPROCESSOR_PATH) DataFrame=pre.fit_transform(DataFrame) dates=pd.date_range(start=None,end=fcst_date,periods=config.FCST_HISTORY,freq=config.FREQUENCY) new_df=DataFrame[DataFrame[config.AIR_DATETIME_COL].isin(dates)].reset_index(drop=True) predict=load_learner(Path('models/AirInceptionTime.pt')) new_df=predict.transform(new_df) new_x,__=prepare_forecasting_data(new_df,fcst_history=config.FCST_HISTORY,fcst_horizon=0,x_vars=config.AIR_COLOUMNS,y_vars=config.AIR_COLOUMNS) new_scaled_preds, *_ = predict.get_X_preds(new_x) new_scaled_preds=to_np(new_scaled_preds).swapaxes(1,2).reshape(-1,len(config.AIR_COLOUMNS)) dates=pd.date_range(start=fcst_date, periods=config.FCST_HORIZON+1,freq='1H')[1:] preds_df=pd.DataFrame(dates,columns=[config.AIR_DATETIME_COL]) preds_df.loc[:, config.AIR_COLOUMNS]=new_scaled_preds preds_df=predict.inverse_transform(preds_df) return preds_df def inference_Energy(fcst_date:string,DataFrame:pd.DataFrame): pre=load_object(config.ENER_PREPROCESSOR_PATH) DataFrame[config.ENERGY_DATETIME]=pd.to_datetime(DataFrame[config.ENERGY_DATETIME],format='mixed') DataFrame=pre.fit_transform(DataFrame) dates=pd.date_range(start=None,end=fcst_date,periods=config.FCST_HISTORY,freq=config.FREQUENCY) new_df=DataFrame[DataFrame[config.ENERGY_DATETIME].isin(dates)].reset_index(drop=True) predict=load_learner(config.MODEL_PATH_ITP_ENER) new_df=predict.transform(new_df) new_x,__=prepare_forecasting_data(new_df,fcst_history=config.FCST_HISTORY,fcst_horizon=0,x_vars=config.ENERGY_COLOUMNS,y_vars=config.ENERGY_COLOUMNS) new_scaled_preds, *_ = predict.get_X_preds(new_x) new_scaled_preds=to_np(new_scaled_preds).swapaxes(1,2).reshape(-1,len(config.ENERGY_COLOUMNS)) dates=pd.date_range(start=fcst_date, periods=config.FCST_HORIZON+1,freq='1H')[1:] preds_df=pd.DataFrame(dates,columns=[config.ENERGY_DATETIME]) preds_df.loc[:, config.ENERGY_COLOUMNS]=new_scaled_preds preds_df=predict.inverse_transform(preds_df) return preds_df def inference_boiler(fcst_date:string,DataFrame:pd.DataFrame): pre=load_object(config.BOILER_PREPROCESSOR_PATH) DataFrame=pre.fit_transform(DataFrame) dates=pd.date_range(start=None,end=fcst_date,periods=config.FCST_HISTORY,freq=config.FREQUENCY) new_df=DataFrame[DataFrame[config.BOILER_DATETIME].isin(dates)].reset_index(drop=True) predict=load_learner(config.MODEL_PATH_ITP_BOIL) new_df=predict.transform(new_df) new_x,__=prepare_forecasting_data(new_df,fcst_history=config.FCST_HISTORY,fcst_horizon=0,x_vars=config.BOILER_COLOUMNS,y_vars=config.BOILER_COLOUMNS) new_scaled_preds, *_ = predict.get_X_preds(new_x) new_scaled_preds=to_np(new_scaled_preds).swapaxes(1,2).reshape(-1,len(config.BOILER_COLOUMNS)) dates=pd.date_range(start=fcst_date, periods=config.FCST_HORIZON+1,freq='1H')[1:] preds_df=pd.DataFrame(dates,columns=[config.BOILER_DATETIME]) preds_df.loc[:, config.BOILER_COLOUMNS]=new_scaled_preds preds_df=predict.inverse_transform(preds_df) return preds_df