Spaces:
Paused
Paused
File size: 8,375 Bytes
c59a3c0 fb7e4f3 cf4f031 9d616d2 c59a3c0 cf4f031 c59a3c0 cf4f031 9d616d2 c59a3c0 fb7e4f3 c59a3c0 9d616d2 c59a3c0 cf4f031 9d616d2 cf4f031 9d616d2 cf4f031 c59a3c0 cf4f031 db6bb35 cf4f031 c59a3c0 9d616d2 cf4f031 db6bb35 9d616d2 db6bb35 cf4f031 db6bb35 cf4f031 c59a3c0 fb7e4f3 c59a3c0 9d616d2 9635299 9d616d2 c59a3c0 fb7e4f3 c59a3c0 fb7e4f3 9d616d2 4b39b8f 9d616d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from transformers import pipeline
import re
from num2words import num2words
import aiohttp
from aiohttp import ClientSession
from aiohttp_retry import RetryClient, ExponentialRetry
from tqdm import tqdm
import asyncio
import os
from dotenv import load_dotenv
import requests
import ffmpeg
import torch
import aiofiles
import tempfile
import subprocess
# load khaya token from environment
load_dotenv()
# load khaya token
KHAYA_TOKEN = os.getenv("KHAYA_TOKEN")
translation_url = "https://translation-api.ghananlp.org/v1/translate"
tts_url = "https://tts-backend-nlpghana-staging.azurewebsites.net/v0/tts"
translation_hdr = {
# Request headers
"Content-Type": "application/json",
"Cache-Control": "no-cache",
"Ocp-Apim-Subscription-Key": KHAYA_TOKEN,
}
tts_header = {
# Request headers
"Content-Type": "application/json",
"Cache-Control": "no-cache",
"Ocp-Apim-Subscription-Key": f"{KHAYA_TOKEN}",
}
LANG_DICT = {"Twi": "tw", "Ewe": "ee"}
# Check if GPU is available
pipe_device = 0 if torch.cuda.is_available() else -1
def replace_numbers_with_words(text):
def replace(match):
return num2words(match.group().replace(",", ""), lang="en")
return re.sub(r"[\d]+[.,\d]+", replace, text)
async def fetch(session, url, headers, data, semaphore, index):
async with semaphore:
try:
async with session.post(
url, headers=headers, json=data, timeout=10
) as response:
response.raise_for_status()
return index, await response.json()
except aiohttp.ClientError as e:
print(f"Request error: {e}")
return index, str(e)
except Exception as e:
print(f"Unexpected error: {e}")
return index, str(e)
async def translation_main(sentences, url, headers, lang):
khaya_translations = [None] * len(sentences)
semaphore = asyncio.Semaphore(2) # limit the number of concurrent requests
retry_options = ExponentialRetry(
attempts=3,
)
async with RetryClient(ClientSession(), retry_options=retry_options) as session:
tasks = []
for index, sent in enumerate(sentences):
data = {"in": sent, "lang": f"en-{lang}"}
tasks.append(fetch(session, url, headers, data, semaphore, index))
for f in tqdm(
asyncio.as_completed(tasks), total=len(tasks), desc="Translating Sentences"
):
index, result = await f
# TODO: handle error response
khaya_translations[index] = result
return khaya_translations
async def convert_text_to_speech(
session,
tts_url,
tts_header,
text,
text_index,
language,
speaker,
semaphore,
output_dir,
):
speaker_dict = {
"tw": {"male": "twi_speaker_5", "female": "twi_speaker_7"},
"ee": {"male": "ewe_speaker_3", "female": None},
}
speaker_id = speaker_dict[language][speaker]
data = {"text": text, "language": language, "speaker_id": speaker_id}
try:
async with semaphore:
async with session.post(tts_url, headers=tts_header, json=data) as response:
response.raise_for_status()
output_path = os.path.join(output_dir, f"{text_index}_tts.wav")
async with aiofiles.open(output_path, "wb") as file:
while True:
chunk = await response.content.read(16384)
if not chunk:
break
await file.write(chunk)
return output_path
except aiohttp.ClientError as e:
print(f"Request error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
async def tts_main(khaya_translations, speaker, language):
with tempfile.TemporaryDirectory() as temp_dir:
async with aiohttp.ClientSession() as session:
semaphore = asyncio.Semaphore(3)
tasks = [
convert_text_to_speech(
session,
tts_url,
tts_header,
sent,
text_index,
language,
speaker,
semaphore,
temp_dir,
)
for text_index, sent in enumerate(khaya_translations)
]
output_files = []
for task in tqdm(
asyncio.as_completed(tasks),
total=len(tasks),
desc="Converting to Speech",
):
result = await task
if result:
output_files.append(result)
output_audio = combine_audio_streams(output_files, "combined_audio.wav")
return output_audio
def extract_audio_from_video(input_video):
if input_video:
output_audio_path = f"separated_audio.aac"
try:
(
ffmpeg.input(f"{input_video}")
.output(f"{output_audio_path}", acodec="copy", vn=None)
.run(overwrite_output=True)
)
print("Audio extracted successfully")
return output_audio_path
except ffmpeg.Error as e:
print(e.stderr.decode())
raise e
def transcribe_and_preprocess_audio(input_audio):
asr = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3",
device=pipe_device,
)
pipeline_whisper_output = asr(
f"{input_audio}",
return_timestamps=True,
)
# preprocess the output before machine translation
sentences = pipeline_whisper_output["text"].split(". ")
sentences = [el.strip() for el in sentences if el]
# replace numbers with words
sentences = [replace_numbers_with_words(sent) for sent in sentences]
return sentences
def combine_audio_streams(list_of_output_chunks, output_audio):
list_of_output_chunks = sorted(
list_of_output_chunks, key=lambda x: int(os.path.basename(x).split("_")[0])
)
input_streams = [ffmpeg.input(chunk) for chunk in list_of_output_chunks]
concatenated = ffmpeg.concat(*input_streams, v=0, a=1).output(f"{output_audio}")
try:
concatenated.run(overwrite_output=True)
return output_audio
except ffmpeg.Error as e:
print(e.stderr.decode())
def create_combined_output(input_video, output_audio, output_video):
try:
video = ffmpeg.input(f"{input_video}")
audio = ffmpeg.input(f"{output_audio}")
(
ffmpeg.output(
video["v"],
audio["a"],
filename=f"{output_video}",
vcodec="copy",
).run(overwrite_output=True)
)
print("Video and audio combined successfully")
return output_video
except ffmpeg.Error as e:
print(e.stderr.decode())
raise e
def create_combined_output_subprocess(input_video, output_audio, output_video):
video_duration = get_media_duration(input_video)
audio_duration = get_media_duration(output_audio)
speed_factor = calculate_speed_factor(video_duration, audio_duration)
if speed_factor < 0.5:
speed_factor = 0.5
if speed_factor > 100:
speed_factor = 100
print(f"Speed factor: {speed_factor}")
try:
command = [
"ffmpeg",
"-i",
f"{input_video}",
"-i",
f"{output_audio}",
"-filter:a",
f"atempo={speed_factor}",
"-c:v",
"copy",
"-map",
"0:v:0",
"-map",
"1:a:0",
f"{output_video}",
]
subprocess.run(command, check=True)
print("Video and audio combined successfully")
return output_video
except subprocess.CalledProcessError as e:
print(e.stderr.decode())
raise e
def get_media_duration(media_file):
"""
Get the duration of a media file in seconds.
"""
probe = ffmpeg.probe(media_file)
duration = float(probe["format"]["duration"])
return duration
def calculate_speed_factor(video_duration, audio_duration):
"""
Calculate the speed factor to align audio with video.
"""
return audio_duration / video_duration
|