GeorgiosIoannouCoder
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#############################################################################################################################
|
2 |
+
# Filename : app.py
|
3 |
+
# Description: A Streamlit application to turn an image to audio story.
|
4 |
+
# Author : Georgios Ioannou
|
5 |
+
#
|
6 |
+
# Copyright © 2024 by Georgios Ioannou
|
7 |
+
#############################################################################################################################
|
8 |
+
# Import libraries.
|
9 |
+
|
10 |
+
|
11 |
+
import os # Load environment variable(s).
|
12 |
+
import requests # Send HTTP GET request to Hugging Face models for inference.
|
13 |
+
import streamlit as st # Build the GUI of the application.
|
14 |
+
|
15 |
+
from dotenv import find_dotenv, load_dotenv # Load environment variables.
|
16 |
+
from langchain.chat_models import ChatOpenAI # Access to OpenAI gpt-3.5-turbo model.
|
17 |
+
from langchain.chains import LLMChain # Chain to run queries against LLMs.
|
18 |
+
# A prompt template. It accepts a set of parameters from the user that can be used to generate a prompt for a language model.
|
19 |
+
from langchain.prompts import PromptTemplate
|
20 |
+
from transformers import pipeline # Access to Hugging Face models.
|
21 |
+
|
22 |
+
|
23 |
+
#############################################################################################################################
|
24 |
+
# Load environment variable(s).
|
25 |
+
|
26 |
+
load_dotenv(find_dotenv())
|
27 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
28 |
+
|
29 |
+
|
30 |
+
#############################################################################################################################
|
31 |
+
# Function to apply local CSS.
|
32 |
+
|
33 |
+
|
34 |
+
def local_css(file_name):
|
35 |
+
with open(file_name) as f:
|
36 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
37 |
+
|
38 |
+
|
39 |
+
#############################################################################################################################
|
40 |
+
# Return the text generated by the model for the image.
|
41 |
+
# Using pipeline.
|
42 |
+
|
43 |
+
|
44 |
+
def img_to_text(image_path):
|
45 |
+
# https://huggingface.co/tasks
|
46 |
+
# Task used here : "image-to-text".
|
47 |
+
# Model used here: "Salesforce/blip-image-captioning-base".
|
48 |
+
# Backup model: "nlpconnect/vit-gpt2-image-captioning".
|
49 |
+
|
50 |
+
image_to_text = pipeline(
|
51 |
+
"image-to-text", model="Salesforce/blip-image-captioning-base"
|
52 |
+
)
|
53 |
+
# image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
54 |
+
|
55 |
+
scenario = image_to_text(image_path)[0]["generated_text"]
|
56 |
+
|
57 |
+
return scenario
|
58 |
+
|
59 |
+
|
60 |
+
#############################################################################################################################
|
61 |
+
# Return the story generated by the model for the scenario.
|
62 |
+
# Using Langchain.
|
63 |
+
|
64 |
+
|
65 |
+
def generate_story(scenario, personality):
|
66 |
+
# Model used here: "gpt-3.5-turbo".
|
67 |
+
|
68 |
+
# The template can be customized to meet one's needs such as:
|
69 |
+
# Generate a story and generate lyrics of a song.
|
70 |
+
|
71 |
+
template = """
|
72 |
+
You are a story teller.
|
73 |
+
You must sound like {personality}.
|
74 |
+
The story should be less than 50 words.
|
75 |
+
Generate a story based on the above constraints and the following scenario: {scenario}.
|
76 |
+
"""
|
77 |
+
|
78 |
+
prompt = PromptTemplate(
|
79 |
+
template=template, input_variables=["scenario", "personality"]
|
80 |
+
)
|
81 |
+
|
82 |
+
story_llm = LLMChain(
|
83 |
+
llm=ChatOpenAI(
|
84 |
+
model_name="gpt-3.5-turbo", temperature=0
|
85 |
+
), # Increasing the temperature, the model becomes more creative and takes longer for inference.
|
86 |
+
prompt=prompt,
|
87 |
+
verbose=True, # Print intermediate values to the console.
|
88 |
+
)
|
89 |
+
|
90 |
+
story = story_llm.predict(
|
91 |
+
scenario=scenario, personality=personality
|
92 |
+
) # Format prompt with kwargs and pass to LLM.
|
93 |
+
|
94 |
+
return story
|
95 |
+
|
96 |
+
|
97 |
+
#############################################################################################################################
|
98 |
+
# Return the speech generated by the model for the story.
|
99 |
+
# Using inference api.
|
100 |
+
|
101 |
+
|
102 |
+
def text_to_speech(story):
|
103 |
+
# Model used here: "espnet/kan-bayashi_ljspeech_vits.
|
104 |
+
# Backup model: "facebook/mms-tts-eng".
|
105 |
+
|
106 |
+
API_URL = (
|
107 |
+
"https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
108 |
+
)
|
109 |
+
# API_URL = "https://api-inference.huggingface.co/models/facebook/mms-tts-eng"
|
110 |
+
|
111 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
112 |
+
|
113 |
+
payload = {"inputs": story}
|
114 |
+
|
115 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
116 |
+
|
117 |
+
with open("audio.flac", "wb") as file:
|
118 |
+
file.write(response.content)
|
119 |
+
|
120 |
+
|
121 |
+
#############################################################################################################################
|
122 |
+
# Main function to create the Streamlit web application.
|
123 |
+
|
124 |
+
|
125 |
+
def main():
|
126 |
+
try:
|
127 |
+
# Page title and favicon.
|
128 |
+
|
129 |
+
st.set_page_config(page_title="Image To Audio Story", page_icon="🖼️")
|
130 |
+
|
131 |
+
# Load CSS.
|
132 |
+
|
133 |
+
local_css("styles/style.css")
|
134 |
+
|
135 |
+
# Title.
|
136 |
+
|
137 |
+
title = f"""<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -6rem">
|
138 |
+
Turn Image to Audio Story</h1>"""
|
139 |
+
st.markdown(title, unsafe_allow_html=True)
|
140 |
+
|
141 |
+
# Define the personalities for the dropdown menu.
|
142 |
+
|
143 |
+
personalities = [
|
144 |
+
"Donald Trump",
|
145 |
+
"Abraham Lincoln",
|
146 |
+
"Aristotle",
|
147 |
+
"Cardi B",
|
148 |
+
"Kanye West",
|
149 |
+
]
|
150 |
+
personality = st.selectbox("Select a personality:", personalities)
|
151 |
+
|
152 |
+
# Upload an image.
|
153 |
+
|
154 |
+
uploaded_file = st.file_uploader("Choose an image:")
|
155 |
+
|
156 |
+
if uploaded_file is not None:
|
157 |
+
# Display the uploaded image.
|
158 |
+
|
159 |
+
bytes_data = uploaded_file.getvalue()
|
160 |
+
with open(uploaded_file.name, "wb") as file:
|
161 |
+
file.write(bytes_data)
|
162 |
+
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True)
|
163 |
+
|
164 |
+
with st.spinner(text="Model Inference..."): # Spinner to keep the application interactive.
|
165 |
+
# Model inference.
|
166 |
+
|
167 |
+
scenario = img_to_text(uploaded_file.name)
|
168 |
+
story = generate_story(scenario=scenario, personality=personality)
|
169 |
+
text_to_speech(story)
|
170 |
+
|
171 |
+
# Display the scenario and story.
|
172 |
+
|
173 |
+
with st.expander("Scenario"):
|
174 |
+
st.write(scenario)
|
175 |
+
with st.expander("Story"):
|
176 |
+
st.write(story)
|
177 |
+
|
178 |
+
# Display the audio.
|
179 |
+
|
180 |
+
st.audio("audio.flac")
|
181 |
+
except Exception as e:
|
182 |
+
# Display any errors.
|
183 |
+
|
184 |
+
st.error(e)
|
185 |
+
|
186 |
+
|
187 |
+
#############################################################################################################################
|
188 |
+
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
main()
|