from text.symbols import symbols
from text.cleaner import clean_text
from text import cleaned_text_to_sequence, get_bert
from modelscope import snapshot_download
from models import SynthesizerTrn
from tqdm import tqdm
import gradio as gr
import numpy as np
import commons
import random
import utils
import torch
import sys
import re
import os
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
net_g = None
debug = False
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
return audio
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
with torch.no_grad():
audio = infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
return (hps.data.sampling_rate, audio)
def text_splitter(text: str):
punctuation = r"[。,;,!,?,〜,\n,\r,\t,.,!,;,?,~, ]"
sentences = re.split(punctuation, text.strip())
return [sentence.strip() for sentence in sentences if sentence.strip()]
def concatenate_audios(audio_samples, sample_rate=44100):
half_second_silence = np.zeros(int(sample_rate / 2))
final_audio = audio_samples[0]
for sample in audio_samples[1:]:
final_audio = np.concatenate((final_audio, half_second_silence, sample))
print("Audio pieces concatenated!")
return (sample_rate, final_audio)
def read_text(file_path: str):
try:
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
except FileNotFoundError:
print(f"File Not Found: {file_path}")
except IOError:
print(f"An error occurred reading the file: {file_path}")
except Exception as e:
print(f"An unknown error has occurred: {e}")
def infer_tab1(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
try:
content = read_text(text)
sentences = text_splitter(content)
audios = []
for sentence in tqdm(sentences, desc="TTS inferring..."):
with torch.no_grad():
audios.append(
infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
)
return concatenate_audios(audios, hps.data.sampling_rate), content
except Exception as e:
return None, f"{e}"
def infer_tab2(content, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
try:
sentences = text_splitter(content)
audios = []
for sentence in tqdm(sentences, desc="TTS inferring..."):
with torch.no_grad():
audios.append(
infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
)
)
return concatenate_audios(audios, hps.data.sampling_rate)
except Exception as e:
print(f"{e}")
return None
if __name__ == "__main__":
model_dir = snapshot_download("Genius-Society/hoyoTTS", cache_dir="./__pycache__")
if debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_dir(model_dir)
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
net_g.eval()
utils.load_checkpoint(f"{model_dir}/G_78000.pth", net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
random.shuffle(speakers)
with gr.Blocks() as app:
gr.Markdown(
"""
Welcome to the Space, which is based on the open source project Bert-vits2, and moved to the bottom for an explanation of the principle. This Space must be used in accordance with local laws and regulations, prohibiting the use of it for any criminal activities."""
)
with gr.Tab("Input Mode"):
gr.Interface(
fn=infer_tab2,
inputs=[
gr.TextArea(
label="Please input the Simplified Chinese text",
placeholder="The first inference takes time to download the model, so be patient.",
show_copy_button=True,
),
gr.Dropdown(choices=speakers, value="莱依拉", label="Role"),
gr.Slider(
minimum=0,
maximum=1,
value=0.2,
step=0.1,
label="Modulation of intonation",
), # SDP/DP Mix Ratio
gr.Slider(
minimum=0.1,
maximum=2,
value=0.6,
step=0.1,
label="Emotional adjustment",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.8,
step=0.1,
label="Phoneme length",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=1,
step=0.1,
label="Output duration",
),
],
outputs=gr.Audio(label="Output Audio"),
flagging_mode="never",
concurrency_limit=4,
)
with gr.Tab("Upload Mode"):
gr.Interface(
fn=infer_tab1, # Use text_to_speech func
inputs=[
gr.components.File(
label="Please upload a simplified Chinese TXT",
type="filepath",
file_types=[".txt"],
),
gr.Dropdown(choices=speakers, value="莱依拉", label="Role"),
gr.Slider(
minimum=0,
maximum=1,
value=0.2,
step=0.1,
label="Modulation of intonation",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.6,
step=0.1,
label="Emotional adjustment",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=0.8,
step=0.1,
label="Phoneme length",
),
gr.Slider(
minimum=0.1,
maximum=2,
value=1,
step=0.1,
label="Output duration",
),
],
outputs=[
gr.Audio(label="Output Audio"),
gr.TextArea(
label="Result of TXT extraction",
show_copy_button=True,
),
],
flagging_mode="never",
concurrency_limit=4,
)
gr.HTML(
"""
"""
)
app.launch()