Spaces:
Running
Running
Chandranshu Jain
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
from langchain_community.llms import HuggingFaceEndpoint
|
3 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
from langchain_core.runnables import RunnablePassthrough
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
from langchain.prompts import ChatPromptTemplate
|
@@ -13,8 +12,13 @@ from langchain.prompts import PromptTemplate
|
|
13 |
from langchain_community.document_loaders import PyPDFLoader
|
14 |
from langchain_chroma import Chroma
|
15 |
from langchain_community.vectorstores import Chroma
|
|
|
|
|
|
|
16 |
|
17 |
|
|
|
|
|
18 |
|
19 |
|
20 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
@@ -63,7 +67,7 @@ def text_splitter(text):
|
|
63 |
|
64 |
#GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
65 |
#COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
66 |
-
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
67 |
|
68 |
def get_conversational_chain():
|
69 |
prompt_template = """
|
@@ -82,10 +86,10 @@ def get_conversational_chain():
|
|
82 |
#repo_id ='google/gemma-1.1-2b-it'
|
83 |
#repo_id='meta-llama/Meta-Llama-3-70B'
|
84 |
repo_id = 'microsoft/Phi-3-mini-4k-instruct'
|
85 |
-
llm = HuggingFaceEndpoint(repo_id=repo_id, max_length=512, temperature=0.3, token=HUGGINGFACE_API_KEY)
|
86 |
#tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it")
|
87 |
#llm = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-2b-it")
|
88 |
-
|
89 |
#llm = pipeline("text-generation", model="google/gemma-1.1-2b-it")
|
90 |
|
91 |
pt = ChatPromptTemplate.from_template(prompt_template)
|
|
|
1 |
import streamlit as st
|
2 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
3 |
from langchain_core.runnables import RunnablePassthrough
|
4 |
from langchain_core.output_parsers import StrOutputParser
|
5 |
from langchain.prompts import ChatPromptTemplate
|
|
|
12 |
from langchain_community.document_loaders import PyPDFLoader
|
13 |
from langchain_chroma import Chroma
|
14 |
from langchain_community.vectorstores import Chroma
|
15 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
16 |
+
# Load model directly
|
17 |
+
from transformers import AutoModelForCausalLM
|
18 |
|
19 |
|
20 |
+
access_token = os.getenv("HUGGINGFACE_API_KEY")
|
21 |
+
|
22 |
|
23 |
|
24 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
|
|
67 |
|
68 |
#GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
69 |
#COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
70 |
+
#HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
71 |
|
72 |
def get_conversational_chain():
|
73 |
prompt_template = """
|
|
|
86 |
#repo_id ='google/gemma-1.1-2b-it'
|
87 |
#repo_id='meta-llama/Meta-Llama-3-70B'
|
88 |
repo_id = 'microsoft/Phi-3-mini-4k-instruct'
|
89 |
+
#llm = HuggingFaceEndpoint(repo_id=repo_id, max_length=512, temperature=0.3, token=HUGGINGFACE_API_KEY)
|
90 |
#tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it")
|
91 |
#llm = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-2b-it")
|
92 |
+
llm = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True, token=access_token)
|
93 |
#llm = pipeline("text-generation", model="google/gemma-1.1-2b-it")
|
94 |
|
95 |
pt = ChatPromptTemplate.from_template(prompt_template)
|