Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,14 +15,27 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
15 |
#from transformers import pipeline
|
16 |
# Load model directly
|
17 |
#from transformers import AutoModelForCausalLM
|
18 |
-
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
19 |
-
|
|
|
|
|
20 |
|
21 |
|
22 |
|
23 |
#access_token = os.getenv("HUGGINGFACE_API_KEY")
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
28 |
|
@@ -97,10 +110,10 @@ def get_conversational_chain(retriever):
|
|
97 |
#llm = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-2b-it")
|
98 |
#llm = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True, token=access_token)
|
99 |
#llm = pipeline("text-generation", model="google/gemma-1.1-2b-it")
|
100 |
-
llm = HuggingFacePipeline.from_model_id(
|
101 |
-
model_id="gpt2",
|
102 |
-
task="text-generation",
|
103 |
-
pipeline_kwargs={"max_new_tokens": 10})
|
104 |
|
105 |
pt = ChatPromptTemplate.from_template(prompt_template)
|
106 |
# Retrieve and generate using the relevant snippets of the blog.
|
|
|
15 |
#from transformers import pipeline
|
16 |
# Load model directly
|
17 |
#from transformers import AutoModelForCausalLM
|
18 |
+
#from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
19 |
+
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
|
20 |
+
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
21 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
22 |
|
23 |
|
24 |
|
25 |
#access_token = os.getenv("HUGGINGFACE_API_KEY")
|
26 |
|
27 |
+
# Configure the Llama index settings
|
28 |
+
Settings.llm = HuggingFaceInferenceAPI(
|
29 |
+
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
30 |
+
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
31 |
+
context_window=3900,
|
32 |
+
token=os.getenv("HUGGINGFACE_API_KEY"),
|
33 |
+
# max_new_tokens=1000,
|
34 |
+
generate_kwargs={"temperature": 0.1},
|
35 |
+
)
|
36 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
37 |
+
model_name="BAAI/bge-small-en-v1.5"
|
38 |
+
)
|
39 |
|
40 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
41 |
|
|
|
110 |
#llm = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-2b-it")
|
111 |
#llm = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True, token=access_token)
|
112 |
#llm = pipeline("text-generation", model="google/gemma-1.1-2b-it")
|
113 |
+
#llm = HuggingFacePipeline.from_model_id(
|
114 |
+
#model_id="gpt2",
|
115 |
+
#task="text-generation",
|
116 |
+
#pipeline_kwargs={"max_new_tokens": 10})
|
117 |
|
118 |
pt = ChatPromptTemplate.from_template(prompt_template)
|
119 |
# Retrieve and generate using the relevant snippets of the blog.
|