File size: 17,502 Bytes
7dfb322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import copy
import torch
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
import random
import numpy as np
from load_weights import load_weight
from sklearn.model_selection import train_test_split
from transformers import GPT2TokenizerFast
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from transformers import AdamW, get_linear_schedule_with_warmup
torch.manual_seed(42)
import nltk
# nltk.download('punkt')

from transformers import GPT2Tokenizer
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler
import datetime
import time
import os
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
from tqdm import trange
import gradio as gr



def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))

class Conv1D(nn.Module):
    def __init__(self, nf, nx):
        super(Conv1D, self).__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = Parameter(w)
        self.bias = Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x
    
class LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        """Construct a layernorm module in the TF style (epsilon inside the square root).
        """
        super(LayerNorm, self).__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x + self.bias
    


class Attention(nn.Module):
    def __init__(self, nx, n_ctx, config, scale=False):
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
        nd, ns = w.size(-2), w.size(-1)
        b = self.bias[:, :, ns-nd:ns, :ns]
        w = w * b - 1e10 * (1 - b)
        w = nn.Softmax(dim=-1)(w)
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)  # (batch, head, head_features, seq_length)
        else:
            return x.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)

    def forward(self, x, layer_past=None):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        if layer_past is not None:
            past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1]  # transpose back cf below
            key = torch.cat((past_key, key), dim=-1)
            value = torch.cat((past_value, value), dim=-2)
        present = torch.stack((key.transpose(-2, -1), value))  # transpose to have same shapes for stacking
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
        return a, present
    

class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = gelu

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return h2
    

class Block(nn.Module):
    def __init__(self, n_ctx, config, scale=False):
        super(Block, self).__init__()
        nx = config.n_embd
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.attn = Attention(nx, n_ctx, config, scale)
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

    def forward(self, x, layer_past=None):
        a, present = self.attn(self.ln_1(x), layer_past=layer_past)
        x = x + a
        m = self.mlp(self.ln_2(x))
        x = x + m
        return x, present
    


class GPT2Model(nn.Module):
    def __init__(self, config):
        super(GPT2Model, self).__init__()
        self.n_layer = config.n_layer
        self.n_embd = config.n_embd
        self.n_vocab = config.vocab_size

        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
        self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)

    def set_embeddings_weights(self, model_embeddings_weights):
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
        self.decoder.weight = model_embeddings_weights  # Tied weights

    

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None):

        if (input_ids >= self.n_vocab).any():
            raise ValueError(f"Invalid token ID found in input_ids: {input_ids}")

        # print(f"input_ids: {input_ids}")  # Debugging statement
        # print(f"Max input_id: {input_ids.max().item()}")  # Debugging statement
        # print(f"Min input_id: {input_ids.min().item()}")  # Debugging statement

        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
            past_length = past[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long,
                                        device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)

        # print(f"inputs_embeds shape: {inputs_embeds.shape}")
        # print(f"position_embeds shape: {position_embeds.shape}")


        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        presents = []
        for block, layer_past in zip(self.h, past):
            hidden_states, present = block(hidden_states, layer_past)
            presents.append(present)
        hidden_states = self.ln_f(hidden_states)
        output_shape = input_shape + (hidden_states.size(-1),)
        return hidden_states.view(*output_shape), presents

class GPT2LMHead(nn.Module):
    def __init__(self, model_embeddings_weights, config):
        super(GPT2LMHead, self).__init__()
        self.n_embd = config.n_embd
        self.set_embeddings_weights(model_embeddings_weights)

    def set_embeddings_weights(self, model_embeddings_weights):
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
        self.decoder.weight = model_embeddings_weights  # Tied weights

    def forward(self, hidden_state):
        # Truncated Language modeling logits (we remove the last token)
        # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        lm_logits = self.decoder(hidden_state)
        return lm_logits
    
import torch.nn.functional as F

def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
        """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
            Args:
                logits: logits distribution shape (batch size, vocabulary size)
                top_k > 0: keep only top k tokens with highest probability (top-k filtering).
                top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                filter_value: value to replace filtered logits.
        """
        assert logits.dim() == 2  # batch size x vocabulary size
        top_k = min(top_k, logits.size(-1))  # Safety check
        if top_k > 0:
            # Remove all tokens with a probability less than the last token of the top-k
            indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
            logits[indices_to_remove] = filter_value

        if top_p > 0.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True)
            cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

            # Remove tokens with cumulative probability above the threshold
            sorted_indices_to_remove = cumulative_probs > top_p
            # Shift the indices to the right to keep also the first token above the threshold
            sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
            sorted_indices_to_remove[..., 0] = 0

            indices_to_remove = sorted_indices[sorted_indices_to_remove]
            logits[indices_to_remove] = filter_value
        return logits


class GPT2LMHeadModel(nn.Module):
    def __init__(self, config):
        super(GPT2LMHeadModel, self).__init__()
        self.transformer = GPT2Model(config)
        self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)

    def set_tied(self):
        """ Make sure we are sharing the embeddings
        """
        self.lm_head.set_embeddings_weights(self.transformer.wte.weight)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):
        hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
        lm_logits = self.lm_head(hidden_states)

        outputs = (lm_logits,presents)

        if lm_labels is not None:
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
            outputs = (loss,) + outputs
        return outputs
    
    import torch.nn.functional as F

    
    
    def generate(
        self, input_ids, max_length, temperature=1.0, top_k=0, top_p=0.9, repetition_penalty=1.0, device='cuda'
    ):
        self.eval()
        input_ids = input_ids.to(device)
        batch_size = input_ids.shape[0]
        past = None

        generated = input_ids
        with torch.no_grad():
            for _ in range(max_length):
                outputs = self(input_ids, past=past)
                next_token_logits = outputs[0][:, -1, :]
                past = outputs[1]

                for i in range(batch_size):
                    for token_id in set(generated[i].tolist()):
                        next_token_logits[i, token_id] /= repetition_penalty

                next_token_logits = next_token_logits / temperature
                filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
                next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
                generated = torch.cat((generated, next_token), dim=1)

                if (next_token == self.config.eos_token_id).all():
                    break

                input_ids = next_token

        return generated
        

class GPT2Config(object):
    def __init__(
            self,
            vocab_size_or_config_json_file=50257,
            n_positions=1024,
            n_ctx=1024,
            n_embd=768,
            n_layer=12,
            n_head=12,
            layer_norm_epsilon=1e-5,
            initializer_range=0.02,
    ):
        self.vocab_size = vocab_size_or_config_json_file
        self.n_ctx = n_ctx
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range



device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = GPT2Config()
model = GPT2LMHeadModel(config)
state_dict = torch.load(r'weights/epoch_4.pth', map_location='cpu' if not torch.cuda.is_available() else None)
model = load_weight(model, state_dict)
model.to(device)
print(model)
model.eval()

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token



def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (batch size x vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
    """
    assert logits.dim() == 2, "Expected logits dimension to be 2 (batch size x vocabulary size)"
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(nn.Softmax(dim=-1)(sorted_logits), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        # Ensure that the dimensions match
        if sorted_indices_to_remove.size() != sorted_indices.size():
            raise ValueError(f"Size mismatch: {sorted_indices_to_remove.size()} vs {sorted_indices.size()}")

        indices_to_remove = sorted_indices[sorted_indices_to_remove]

        # Expand dimensions to match logits tensor and use scatter_
        for batch_idx in range(logits.size(0)):
            logits[batch_idx, indices_to_remove[batch_idx]] = filter_value
            
    return logits

# prompt_text = "What is a nucleophile in organic chemistry?"
# prompt = f"\n<|startoftext|>[WP] {prompt_text} \n[RESPONSE]"
# input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)


max_length = 100
temperature = 0.7
top_k = 1
top_p = 0.95
repetition_penalty = 1.0

with torch.no_grad():
    for _ in range(max_length):
        outputs = model(input_ids)
        logits = outputs[0]
        next_token_logits = logits[:, -1, :] / temperature

        # Apply repetition penalty
        for i in range(input_ids.size(0)):
            for token_id in set(input_ids[i].tolist()):
                next_token_logits[0, token_id] /= repetition_penalty

        # Filter logits using top-k and/or top-p filtering
        filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
        next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
        input_ids = torch.cat([input_ids, next_token], dim=-1).to(device)


# import re
# # generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
# # wp_responses = re.split(r"\[WP\].*?\n|\[RESPONSE\]", generated_text)[1:]
# print(input_ids[0])

# generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
# wp_responses = re.split(r"\[WP\].*?\n|\[RESPONSE\]", generated_text)[1:]
# print(wp_responses)

# Create a Gradio interface
iface = gr.Interface(
    fn=generate_response,
    inputs="text",
    outputs="text",
    title="Custom GPT-2 Model",
    description="Enter a prompt to get a generated response from the custom-trained GPT-2 model.",
    examples=[
        ["What is a nucleophile in organic chemistry?"],
        ["Explain the concept of quantum entanglement."],
        ["How does photosynthesis work?"]
    ]
)

# Launch the Gradio interface
iface.launch(share=True, debug=True)