""" The following code is adapted from/inspired by the 'neural-cherche' project: https://github.com/raphaelsty/neural-cherche Specifically, neural-cherche/neural_cherche/models/splade.py MIT License Copyright (c) 2023 Raphael Sourty Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import torch import logging import onnxruntime as ort from transformers import AutoTokenizer from typing import Dict, List, Optional from scipy.sparse import csr_array, vstack from milvus_model.base import BaseEmbeddingFunction from optimum.onnxruntime import ORTModelForMaskedLM from milvus_model.utils import import_transformers, import_scipy, import_torch import_torch() import_scipy() import_transformers() logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class SpladeEncoder(BaseEmbeddingFunction): model_name: str def __init__( self, model_name: str = "naver/splade-cocondenser-ensembledistil", query_instruction: str = "", doc_instruction: str = "", device: Optional[str] = "cpu", k_tokens_query: Optional[int] = None, k_tokens_document: Optional[int] = None ): self.model_name = model_name _model_config = dict( {"model_name_or_path": model_name, "device": device} ) self._model_config = _model_config self.model = _SpladeImplementation(**self._model_config) self.device = device self.k_tokens_query = k_tokens_query self.k_tokens_document = k_tokens_document self.query_instruction = query_instruction self.doc_instruction = doc_instruction def __call__(self, texts: List[str], batch_size: int = 32) -> csr_array: return self._encode(texts, None, batch_size) def encode_documents(self, documents: List[str]) -> csr_array: return self._encode( [self.doc_instruction + document for document in documents], self.k_tokens_document, ) def _encode(self, texts: List[str], k_tokens: int, batch_size: int) -> csr_array: return self.model.forward(texts, k_tokens=k_tokens, batch_size=batch_size) def encode_queries(self, queries: List[str]) -> csr_array: return self._encode( [self.query_instruction + query for query in queries], self.k_tokens_query, ) @property def dim(self) -> int: return len(self.model.tokenizer) def _encode_query(self, query: str) -> csr_array: return self.model.forward([self.query_instruction + query], k_tokens=self.k_tokens_query)[0] def _encode_document(self, document: str) -> csr_array: return self.model.forward( [self.doc_instruction + document], k_tokens=self.k_tokens_document )[0] class _SpladeImplementation: def __init__( self, model_name_or_path: Optional[str] = None, device: Optional[str] = None ): self.device = device self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) session_options = ort.SessionOptions() session_options.log_severity_level = 0 self.model = ORTModelForMaskedLM.from_pretrained( model_id=model_name_or_path, file_name='model.onnx', provider='CUDAExecutionProvider', use_io_binding=True, session_options=session_options ) self.relu = torch.nn.ReLU() self.relu.to(self.device) self.model.config.output_hidden_states = True def _encode(self, texts: List[str]): encoded_input = self.tokenizer.batch_encode_plus( texts, truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt", add_special_tokens=True, padding=True, ) encoded_input = {key: val.to(self.device) for key, val in encoded_input.items()} output = self.model(**encoded_input) return output.logits def _batchify(self, texts: List[str], batch_size: int) -> List[List[str]]: return [texts[i : i + batch_size] for i in range(0, len(texts), batch_size)] def forward(self, texts: List[str], k_tokens: int, batch_size: int) -> csr_array: with torch.no_grad(): batched_texts = self._batchify(texts, batch_size) sparse_embs = [] for batch_texts in batched_texts: logits = self._encode(texts=batch_texts) activations = self._get_activation(logits=logits) if k_tokens is None: nonzero_indices = torch.nonzero(activations["sparse_activations"]) activations["activations"] = nonzero_indices else: activations = self._update_activations(**activations, k_tokens=k_tokens) batch_csr = self._convert_to_csr_array(activations) sparse_embs.extend(batch_csr) return vstack(sparse_embs).tocsr() def _get_activation(self, logits: torch.Tensor) -> Dict[str, torch.Tensor]: return {"sparse_activations": torch.amax(torch.log1p(self.relu(logits)), dim=1)} def _update_activations(self, sparse_activations: torch.Tensor, k_tokens: int) -> torch.Tensor: activations = torch.topk(input=sparse_activations, k=k_tokens, dim=1).indices # Set value of max sparse_activations which are not in top k to 0. sparse_activations = sparse_activations * torch.zeros( (sparse_activations.shape[0], sparse_activations.shape[1]), dtype=int, device=self.device, ).scatter_(dim=1, index=activations.long(), value=1) activations = torch.cat( ( torch.arange(activations.shape[0], device=activations.device) .repeat_interleave(activations.shape[1]) .reshape(-1, 1), activations.reshape((-1, 1)), ), dim=1, ) return { "activations": activations, "sparse_activations": sparse_activations, } def _filter_activations( self, activations: torch.Tensor, k_tokens: int, **kwargs ) -> torch.Tensor: _, activations = torch.topk(input=activations, k=k_tokens, dim=1, **kwargs) return activations def _convert_to_csr_array(self, activations: Dict): values = ( activations["sparse_activations"][ activations["activations"][:, 0], activations["activations"][:, 1] ] .cpu() .detach() .numpy() ) row_indices = activations["activations"][:, 0].cpu().detach().numpy() col_indices = activations["activations"][:, 1].cpu().detach().numpy() return csr_array( (values.flatten(), (row_indices, col_indices)), shape=activations["sparse_activations"].shape, )