import os import re import lz4 import nltk import copy import time import vllm import msgpack import validators import numpy as np import pandas as pd import streamlit as st from typing import List from numpy import ndarray from outlines import models from llama_cpp import Llama import hydralit_components as hc from transformers import AutoTokenizer from qdrant_client import QdrantClient from optimum_encoder import OptimumEncoder from huggingface_hub import snapshot_download from unstructured.partition.auto import partition from fastembed import SparseEmbedding, SparseTextEmbedding from unstructured.nlp.tokenize import download_nltk_packages from scipy.sparse import csr_matrix, save_npz, load_npz, vstack from langchain_experimental.text_splitter import SemanticChunker from langchain_community.document_loaders import WikipediaLoader, WebBaseLoader from qdrant_client.models import ( NamedSparseVector, NamedVector, SparseVector, PointStruct, ScoredPoint, Prefetch, FusionQuery, Fusion, SearchRequest, Modifier, OptimizersConfigDiff, HnswConfigDiff, Distance, VectorParams, SparseVectorParams, SparseIndexParams ) def make_points(texts: List[str], metadatas: List[dict], dense: List[List[float]], sparse: List[SparseEmbedding])-> List[PointStruct]: points = [] for idx, (text, metadata, sparse_vector, dense_vector) in enumerate(zip(texts, metadatas, sparse, dense)): sparse_vec = SparseVector(indices=sparse_vector.indices.tolist(), values=sparse_vector.values.tolist()) point = PointStruct( id=idx, vector={ "text-sparse": sparse_vec, "text-dense": dense_vector, }, payload={ "text": text, "metadata": metadata } ) points.append(point) return points def transform_query(query: str) -> str: """ For retrieval, add the prompt for query (not for documents). """ return f'Represent this sentence for searching relevant passages: {query}' def query_hybrid_search(query: str, client: QdrantClient, collection_name: str, dense_model: OptimumEncoder, sparse_model: SparseTextEmbedding): dense_embeddings = dense_model.embed_query(transform_query(query))[0] sparse_embeddings = list(sparse_model.query_embed(query))[0] return client.query_points( collection_name=collection_name, prefetch=[ Prefetch(query=sparse_embeddings.as_object(), using="text-sparse", limit=10), Prefetch(query=dense_embeddings, using="text-dense", limit=10) ], query=FusionQuery(fusion=Fusion.RRF), limit=3 ) def main(query: str, client: QdrantClient, collection_name: str, llm: Llama, dense_model: OptimumEncoder, sparse_model: SparseTextEmbedding): scored_points = query_hybrid_search(query, client, collection_name, dense_model, sparse_model).points docs = [(scored_point.payload['text'], scored_point.payload['metadata']) for scored_point in scored_points] contents, metadatas = [list(t) for t in zip(*docs)] context = "\n".join(contents) seen_values = set() result_metadatas = "\n\n".join( f'{value}' for metadata in metadatas for key, value in metadata.items() if (value not in seen_values and not seen_values.add(value)) ) sampling_params_1 = vllm.SamplingParams(temperature=0, max_tokens=3000) prompt_1 = [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": st.session_state.qa_prompt(query, context) } ] inputs_1 = tokenizer.apply_chat_template(prompt_1, tokenize=False, add_generation_prompt=True) response = llm.generate(prompts=inputs_1, sampling_params=sampling_params_1) text = response[0].outputs[0].text print(f'TEXT: {response}') sampling_params_2 = vllm.SamplingParams(temperature=0.75, max_tokens=3000) prompt_2 = [ {"role": "system", "content": """Act like a professional summary writer. You have been providing summarization services for various types of documents, including academic papers, legal texts, and business reports, for over 20 years. Your expertise includes extracting key points and important details concisely without adding unnecessary introductory phrases.""" }, { "role": "user", "content": f"""Write a summary of the following text delimited by triple backquotes. Ensure the summary covers the key points of the text. Do not introduce the summary with sentences like "Here is the summary:" or similar. The summary should be detailed, precise, and directly convey the essential information from the text. ```{text}``` Let's think step-by-step.""" } ] inputs_2 = tokenizer.apply_chat_template(prompt_2, tokenize=False, add_generation_prompt=True) output = llm.generate(prompts=inputs_2, sampling_params=sampling_params_2) answer = output[0].outputs[0].text answer_with_metadatas = f"{answer}\n\n\nSource(s) :\n\n{result_metadatas}" print(f'OUTPUT: {output}') if st.session_state.documents_only: return answer if 'no_answer' in text else answer_with_metadatas else: return f'Internal Knowledge :\n\n{answer}' if 'knowledge_topic' in text else f'Documents Based :\n\n{answer_with_metadatas}' @st.cache_resource def load_models_and_documents(): with st.spinner('Load models...'): model_path = snapshot_download("astronomer/Llama-3-8B-Instruct-GPTQ-4-Bit") tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) llm = vllm.LLM( model_path, tensor_parallel_size=1, max_model_len=8192, trust_remote_code=True, enforce_eager=True, quantization='gptq', gpu_memory_utilization=0.6, dtype='float16' #load_format='npcache' ) model = models.VLLM(llm) dense_model = OptimumEncoder( device="cuda", cache_dir=os.getenv('HF_HOME') ) sparse_model = SparseTextEmbedding( 'Qdrant/bm42-all-minilm-l6-v2-attentions', cache_dir=os.getenv('HF_HOME'), providers=['CPUExecutionProvider'] ) download_nltk_packages() client = QdrantClient(':memory:') collection_name = 'collection_demo' client.create_collection( collection_name, { "text-dense": VectorParams( size=1024, distance=Distance.COSINE, on_disk=False ) }, { "text-sparse": SparseVectorParams( index=SparseIndexParams( on_disk=False ), modifier=Modifier.IDF ) }, 2, optimizers_config=OptimizersConfigDiff( indexing_threshold=0, default_segment_number=4 ), hnsw_config=HnswConfigDiff( on_disk=False, m=64, ef_construct=512 ) ) with st.spinner('Parse and chunk documents...'): name = 'action_rpg' embeddings_path = os.path.join(os.getenv('HF_HOME'), 'embeddings') texts_path = os.path.join(embeddings_path, name + '_texts') metadatas_path = os.path.join(embeddings_path, name + '_metadatas') dense_path = os.path.join(embeddings_path, name + '_dense.npz') sparse_path = os.path.join(embeddings_path, name + '_sparse.npz') if not os.path.exists(embeddings_path): os.mkdir(embeddings_path) docs_1 = WikipediaLoader(query='Action-RPG').load() docs_2 = WikipediaLoader(query='Real-time strategy').load() docs_3 = WikipediaLoader(query='First-person shooter').load() docs_4 = WikipediaLoader(query='Multiplayer online battle arena').load() docs_5 = WikipediaLoader(query='List of video game genres').load() docs = docs_1 + docs_2 + docs_3 + docs_4 + docs_5 texts, metadatas = [], [] for doc in docs: texts.append(doc.page_content) del doc.metadata['title'] del doc.metadata['summary'] metadatas.append(doc.metadata) docs_texts, docs_metadatas, dense_embeddings, sparse_embeddings = chunk_documents(texts, metadatas, dense_model, sparse_model) with lz4.frame.open(texts_path, mode="wb") as outfile_texts: packed_texts = msgpack.packb(docs_texts, use_bin_type=True) outfile_texts.write(packed_texts) with lz4.frame.open(metadatas_path, mode="wb") as outfile_metadatas: packed_metadatas = msgpack.packb(docs_metadatas, use_bin_type=True) outfile_metadatas.write(packed_metadatas) np.savez_compressed(dense_path, *dense_embeddings) max_index = 0 for embedding in sparse_embeddings: if embedding.indices.size > 0: max_index = max(max_index, np.max(embedding.indices)) sparse_matrices = [] for embedding in sparse_embeddings: data = embedding.values indices = embedding.indices indptr = np.array([0, len(data)]) matrix = csr_matrix((data, indices, indptr), shape=(1, max_index + 1)) sparse_matrices.append(matrix) combined_sparse_matrix = vstack(sparse_matrices) save_npz(sparse_path, combined_sparse_matrix) else: with lz4.frame.open(texts_path, mode="r") as data_file_texts: byte_data_texts = data_file_texts.read() with lz4.frame.open(metadatas_path, mode="r") as data_file_metadatas: byte_data_metadatas = data_file_metadatas.read() docs_texts = msgpack.unpackb(byte_data_texts, raw=False) docs_metadatas = msgpack.unpackb(byte_data_metadatas, raw=False) dense_embeddings = list(np.load(dense_path).values()) sparse_embeddings = [] loaded_sparse_matrix = load_npz(sparse_path) for i in range(loaded_sparse_matrix.shape[0]): row = loaded_sparse_matrix.getrow(i) values = row.data indices = row.indices embedding = SparseEmbedding(values, indices) sparse_embeddings.append(embedding) with st.spinner('Save documents...'): client.upsert( collection_name, make_points( docs_texts, docs_metadatas, dense_embeddings, sparse_embeddings ) ) client.update_collection( collection_name=collection_name, optimizer_config=OptimizersConfigDiff(indexing_threshold=20000) ) return client, collection_name, tokenizer, model, llm, dense_model, sparse_model def chunk_documents(texts: List[str], metadatas: List[dict], dense_model: OptimumEncoder, sparse_model: SparseTextEmbedding): import time text_splitter = SemanticChunker( dense_model, breakpoint_threshold_type='standard_deviation' ) docs = text_splitter.create_documents(texts, metadatas) documents, metadatas_docs = zip(*[(doc.page_content, doc.metadata) for doc in docs]) documents = list(documents) metadatas_docs = list(metadatas_docs) start_dense = time.time() dense_embeddings = dense_model.embed_documents(documents) end_dense = time.time() final_dense = end_dense - start_dense print(f'DENSE TIME: {final_dense}') start_sparse = time.time() sparse_embeddings = list(sparse_model.embed(documents, 32)) end_sparse = time.time() final_sparse = end_sparse - start_sparse print(f'SPARSE TIME: {final_sparse}') return documents, metadatas_docs, dense_embeddings, sparse_embeddings def on_change_documents_only(): st.session_state.qa_prompt = lambda query, context: ( f"""You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, reply with 'no_answer'. Use three sentences maximum and keep the answer concise. Question: {query} Context: {context} Answer:""" if st.session_state.documents_only else f"""If the context is not relevant, please answer the question by using your own knowledge about the topic. If you decide to provide information using your own knowledge or general knowledge, write 'knowledge_topic' at the top of your answer {context} Question: {query}""" ) st.session_state.tooltip = 'The AI answer your questions only considering the documents provided' if st.session_state.documents_only else """The AI answer your questions considering the documents provided, and if it doesn't found the answer in them, try to find in its own internal knowledge""" if __name__ == '__main__': st.set_page_config(page_title="Multipurpose AI Agent",layout="wide", initial_sidebar_state='collapsed') menu_id = hc.nav_bar( menu_definition=[ {'id': 'ChatBot', 'label': 'ChatBot', 'ttip': 'ChatBot'}, {'id': 'Documents', 'label': 'Documents', 'ttip': 'Documents'} ], hide_streamlit_markers=False, sticky_nav=True, sticky_mode='pinned' ) st.title('Multipurpose AI Agent') #st.markdown("

Multipurpose AI Agent

", unsafe_allow_html=True) if "qa_prompt" not in st.session_state: st.session_state.qa_prompt = lambda query, context: ( f"""You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, reply with 'no_answer'. Use three sentences maximum and keep the answer concise. Question: {query} Context: {context} Answer:""" ) if "tooltip" not in st.session_state: st.session_state.tooltip = 'The AI answer your questions only considering the documents provided' client, collection_name, tokenizer, model, llm, dense_model, sparse_model = load_models_and_documents() if menu_id == 'Documents': editable_df = st.data_editor( pd.DataFrame([]), num_rows="dynamic", use_container_width=True, column_config={ "document": st.column_config.TextColumn( "Documents", help="Name of the document", required=True ), "type": st.column_config.SelectboxColumn( 'File type', help='The file format extension of this document', required=True, options=[ 'DOC', 'DOCX', 'PPT', 'PPTX', 'XSLX' ] ), "link": st.column_config.LinkColumn( 'Links', help='Link to the document', required=False ), "time": st.column_config.DatetimeColumn( 'Date and hour', help='When this document has been ingested here for the last time', required=True ), "toggle": st.column_config.CheckboxColumn( 'Enable/Disable', help='Either to enable or disable the ability for the ai to find this document', required=True, default=True ) } ) conversations_path = os.path.join(os.getenv('HF_HOME'), 'conversations') try: with lz4.frame.open(conversations_path, mode='r') as fp: conversations = msgpack.unpackb(fp.read(), raw=False) except: conversations = {} if menu_id == 'ChatBot': with st.sidebar: if 'chat_id' not in st.session_state: st.session_state.chat_id = st.selectbox( label='Choose a conversation', options=[None] + list(conversations.keys()), format_func=lambda x: conversations.get(x, 'New Chat'), placeholder='_', ) else: st.session_state.chat_id = st.selectbox( label='Choose a conversation', options=[None, st.session_state.chat_id] + list(conversations.keys()), index=1, format_func=lambda x: conversations.get(x, 'New Chat' if x != st.session_state.chat_id else st.session_state.chat_title), placeholder='_', ) st.session_state.chat_title = f'ChatSession-{st.session_state.chat_id}' chat_id_path = os.path.join(os.getenv('HF_HOME'), f'{st.session_state.chat_id}-st_messages') try: with lz4.frame.open(chat_id_path, mode='r') as fp: st.session_state.messages = msgpack.unpackb(fp.read(), raw=False) except: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("Message Video Game Assistant"): if st.session_state.chat_id not in conversations.keys(): sampling_params = vllm.SamplingParams(temperature=0.75, max_tokens=35) prompt_conversation = [{"role": "user", "content": f"{prompt}\nExplain the above in one sentence:"}] inputs = tokenizer.apply_chat_template(prompt_conversation, tokenize=False, add_generation_prompt=True) outputs = llm.generate(prompts=inputs, sampling_params=sampling_params) st.session_state.chat_id = outputs[0].outputs[0].text st.session_state.chat_title = f'ChatSession-{st.session_state.chat_id}' conversations[st.session_state.chat_id] = st.session_state.chat_title with lz4.frame.open(conversations_path, mode='wb') as fp: packed_bytes = msgpack.packb(conversations, use_bin_type=True) fp.write(packed_bytes) st.chat_message("user").markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) print(f'PROMPT: {prompt}') ai_response = main(prompt, client, collection_name, llm, dense_model, sparse_model) with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" for chunk in re.split(r'(\s+)', ai_response): full_response += chunk + " " time.sleep(0.01) message_placeholder.write(full_response + '▌') message_placeholder.write(re.sub('▌', '', full_response)) st.session_state.messages.append({"role": "assistant", "content": full_response}) with lz4.frame.open(chat_id_path, mode='wb') as fp: packed_bytes = msgpack.packb(st.session_state.messages, use_bin_type=True) fp.write(packed_bytes) with st.sidebar: st.divider() tooltip = 'The AI answer your questions only considering the documents provided' st.toggle( label="""Enable 'Documents-Only' Mode""", value=True, on_change=on_change_documents_only, key="documents_only", help=st.session_state.tooltip ) st.divider() url = st.text_input("Scrape an URL link :") if validators.url(url): docs = WebBaseLoader(url).load() print(f'WebBaseLoader: {docs[0].metadata}') texts, metadatas = [], [] for doc in docs: texts.append(doc.page_content) del doc.metadata['title'] del doc.metadata['description'] del doc.metadata['language'] metadatas.append(doc.metadata) texts, metadatas, dense_embeddings, sparse_embeddings = chunk_documents(texts, metadatas, dense_model, sparse_model) client.upsert( collection_name, make_points( texts, metadatas, dense_embeddings, sparse_embeddings ) ) container = st.empty() container.success("URL content uploaded and ready!") time.sleep(2) container.empty() st.divider() uploaded_files = st.file_uploader("Upload a file :", accept_multiple_files=True, type=['docx', 'doc', 'pptx', 'ppt', 'xlsx', 'txt']) print(f'uploaded-files : {uploaded_files}') for uploaded_file in uploaded_files: print('count') elements = partition(file=uploaded_file, strategy='fast', skip_infer_table_types=['png', 'pdf', 'jpg', 'xls', 'xlsx', 'heic'], include_page_breaks=True ) metadata_dict = {"source": uploaded_file.name} texts, metadatas = [], [] for elem in elements: texts.append(elem.text) metadatas.append(metadata_dict) texts, metadatas, dense_embeddings, sparse_embeddings = chunk_documents(texts, metadatas, dense_model, sparse_model) client.upsert( collection_name, make_points( texts, metadatas, dense_embeddings, sparse_embeddings ) ) container = st.empty() container.success("Document content uploaded and ready!") time.sleep(2) container.empty()