import os import re import nltk import copy import time import joblib import msgpack import numpy as np import streamlit as st from io import StringIO from numpy import ndarray from llama_cpp import Llama from langchain_core.documents.base import Document from scipy.sparse import csr_matrix, save_npz, load_npz, vstack from qdrant_client import QdrantClient, models from langchain_community.document_loaders.wikipedia import WikipediaLoader from langchain_experimental.text_splitter import SemanticChunker from fastembed.sparse.splade_pp import supported_splade_models from fastembed import SparseTextEmbedding, SparseEmbedding from fastembed_ext import FastEmbedEmbeddingsLc from huggingface_hub import hf_hub_download from unstructured.partition.auto import partition from qdrant_client.models import ( NamedSparseVector, NamedVector, SparseVector, PointStruct, SearchRequest, ScoredPoint, ) def make_points(chunks: list[str], dense: list[ndarray], sparse: list[SparseEmbedding])-> list[PointStruct]: points = [] for idx, (sparse_vector, chunk, dense_vector) in enumerate(zip(sparse, chunks, dense)): sparse_vec = SparseVector(indices=sparse_vector.indices.tolist(), values=sparse_vector.values.tolist()) point = PointStruct( id=idx, vector={ "text-sparse": sparse_vec, "text-dense": dense_vector, }, payload={ "text": chunk } ) points.append(point) return points def search(client: QdrantClient, collection_name: str, dense, sparse): search_results = client.search_batch( collection_name, [ SearchRequest( vector=NamedVector( name="text-dense", vector=dense, ), limit=10 ), SearchRequest( vector=NamedSparseVector( name="text-sparse", vector=SparseVector( indices=sparse[0].indices.tolist(), values=sparse[0].values.tolist(), ), ), limit=10 ), ], ) return search_results def rank_list(search_result: list[ScoredPoint]): return [(point.id, rank + 1) for rank, point in enumerate(search_result)] def rrf(rank_lists, alpha=60, default_rank=1000): """ Optimized Reciprocal Rank Fusion (RRF) using NumPy for large rank lists. :param rank_lists: A list of rank lists. Each rank list should be a list of (item, rank) tuples. :param alpha: The parameter alpha used in the RRF formula. Default is 60. :param default_rank: The default rank assigned to items not present in a rank list. Default is 1000. :return: Sorted list of items based on their RRF scores. """ all_items = set(item for rank_list in rank_lists for item, _ in rank_list) item_to_index = {item: idx for idx, item in enumerate(all_items)} rank_matrix = np.full((len(all_items), len(rank_lists)), default_rank) for list_idx, rank_list in enumerate(rank_lists): for item, rank in rank_list: rank_matrix[item_to_index[item], list_idx] = rank rrf_scores = np.sum(1.0 / (alpha + rank_matrix), axis=1) sorted_indices = np.argsort(-rrf_scores) sorted_items = [(list(item_to_index.keys())[idx], rrf_scores[idx]) for idx in sorted_indices] return sorted_items def main(query: str, client: QdrantClient, collection_name: str, llm, dense_model, sparse_model): dense_query = list(dense_model.embed_query(query, 32)) sparse_query = list(sparse_model.embed(query, 32)) search_results = search( client, collection_name, dense_query, sparse_query ) dense_rank_list, sparse_rank_list = rank_list(search_results[0]), rank_list(search_results[1]) rrf_rank_list = rrf([dense_rank_list, sparse_rank_list]) records_list = client.retrieve( collection_name, [item[0] for item in rrf_rank_list] ) docs = [record.payload['text'] for record in records_list[:3]] context = "\n".join(docs) response = llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a helpful assistant."}, { "role": "user", "content": f""" You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise. Question: {query} Context: {context} Answer:""" } ], stop=[""], temperature=0, frequency_penalty=0.2, presence_penalty=0.4, top_p=0.2) text = response["choices"][0]["message"]['content'] print(f'TEXT: {text}') output = llm.create_chat_completion( messages = [ {"role": "system", "content": """Act like a professional summary writer. You have been providing summarization services for various types of documents, including academic papers, legal texts, and business reports, for over 20 years. Your expertise includes extracting key points and important details concisely without adding unnecessary introductory phrases.""" }, { "role": "user", "content": f"""Write a summary of the following text delimited by triple backquotes. Ensure the summary covers the key points of the text. Do not introduce the summary with sentences like "Here is the summary:" or similar. The summary should be detailed, precise, and directly convey the essential information from the text. ```{text}``` Take a deep breath and work on this problem step-by-step.""" } ], stop=[""], temperature=0.7, max_tokens=3000) final_response = output['choices'][0]['message']['content'] print(f'OUTPUT: {output}') return final_response @st.cache_resource def load_models_and_documents(): print('load') supported_splade_models[0] = { "model": "prithivida/Splade_PP_en_v2", "vocab_size": 30522, "description": "Implementation of SPLADE++ Model for English v2", "size_in_GB": 0.532, "sources": { "hf": "devve1/Splade_PP_en_v2_onnx" }, "model_file": "model.onnx" } with st.spinner('Load models...'): llm = Llama.from_pretrained( repo_id="MaziyarPanahi/Llama-3-8B-Instruct-32k-v0.1-GGUF", filename="*Q8_0.gguf", verbose=False, chat_format="chatml", n_ctx=16000, n_gpu_layers=32 ) provider = ['CUDAExecutionProvider'] dense_model = FastEmbedEmbeddingsLc( model_name='mixedbread-ai/mxbai-embed-large-v1', providers=provider, cache_dir=os.getenv('HF_HOME'), batch_size=32 ) sparse_model = SparseTextEmbedding( 'prithivida/Splade_PP_en_v2', cache_dir=os.getenv('HF_HOME'), providers=provider ) nltk.download('punkt') nltk.download('averaged_perceptron_tagger') client = QdrantClient(':memory:') collection_name = 'collection_demo' client.create_collection( collection_name, { "text-dense": models.VectorParams( size=1024, distance=models.Distance.COSINE, on_disk=False, quantization_config=models.BinaryQuantization( binary=models.BinaryQuantizationConfig( always_ram=True ) ) ) }, { "text-sparse": models.SparseVectorParams( index=models.SparseIndexParams( on_disk=False ) ) }, 2, optimizers_config=models.OptimizersConfigDiff( indexing_threshold=0 ), hnsw_config=models.HnswConfigDiff( on_disk=False, m=16, ef_construct=100 ) ) with st.spinner('Parse and chunk documents...'): name = 'action_rpg' embeddings_path = os.path.join(os.getenv('HF_HOME'), 'embeddings') chunks_path = os.path.join(embeddings_path, name + '_chunks.msgpack') dense_path = os.path.join(embeddings_path, name + '_dense.npz') sparse_path = os.path.join(embeddings_path, name + '_sparse.npz') if not os.path.exists(embeddings_path): os.mkdir(embeddings_path) docs_1 = WikipediaLoader(query='Action-RPG').load() docs_2 = WikipediaLoader(query='Real-time strategy').load() docs_3 = WikipediaLoader(query='First-person shooter').load() docs_4 = WikipediaLoader(query='Multiplayer online battle arena').load() docs_5 = WikipediaLoader(query='List of video game genres').load() docs = docs_1 + docs_2 + docs_3 + docs_4 + docs_5 chunks, dense_embeddings, sparse_embeddings = chunk_documents(docs, dense_model, sparse_model) with open(chunks_path, "wb") as outfile: packed = msgpack.packb(chunks, use_bin_type=True) outfile.write(packed) np.savez_compressed(dense_path, *dense_embeddings) max_index = max(np.max(embedding.indices) for embedding in sparse_embeddings) sparse_matrices = [] for embedding in sparse_embeddings: data = embedding.values indices = embedding.indices indptr = np.array([0, len(data)]) matrix = csr_matrix((data, indices, indptr), shape=(1, max_index + 1)) sparse_matrices.append(matrix) combined_sparse_matrix = vstack(sparse_matrices) save_npz(sparse_path, combined_sparse_matrix) else: with open(chunks_path, "rb") as data_file: byte_data = data_file.read() chunks = msgpack.unpackb(byte_data, raw=False) dense_embeddings = list(np.load(dense_path).values()) sparse_embeddings = [] loaded_sparse_matrix = load_npz(sparse_path) for i in range(loaded_sparse_matrix.shape[0]): row = loaded_sparse_matrix.getrow(i) values = row.data indices = row.indices embedding = SparseEmbedding(values, indices) sparse_embeddings.append(embedding) with st.spinner('Save documents...'): client.upsert( collection_name, make_points( chunks, dense_embeddings, sparse_embeddings ) ) client.update_collection( collection_name=collection_name, optimizer_config=models.OptimizersConfigDiff(indexing_threshold=20000) ) return client, collection_name, llm, dense_model, sparse_model def chunk_documents(docs, dense_model, sparse_model): text_splitter = SemanticChunker( dense_model, breakpoint_threshold_type='standard_deviation' ) texts, metadatas = [], [] for doc in docs: texts.append(doc.page_content) metadatas.append(doc.metadata) _metadatas = metadatas or [{}] * len(texts) documents = [] def create_document(text: str, i: int, _metadatas: list): index = -1 for chunk in text_splitter.split_text(text): metadata = copy.deepcopy(_metadatas[i]) if text_splitter._add_start_index: index = text.find(chunk, index + 1) metadata['start_index'] = index new_doc = Document(page_content=chunk, metadata=metadata) documents.append(new_doc) joblib.Parallel(n_jobs=joblib.cpu_count(), verbose=1, require='sharedmem')( joblib.delayed(create_document)(text, i, _metadatas) for i, text in enumerate(texts)) docs = [doc.page_content for doc in documents] dense_embeddings = dense_model.embed_documents(docs,32) sparse_embeddings = list(sparse_model.embed(docs, 32)) return documents, dense_embeddings, sparse_embeddings if __name__ == '__main__': st.set_page_config(page_title="Video Game Assistant", layout="wide" ) st.title("Video Game Assistant") client, collection_name, llm, dense_model, sparse_model = load_models_and_documents() if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("Message Video Game Assistant"): st.chat_message("user").markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) ai_response = main(prompt, client, collection_name, llm, dense_model, sparse_model) with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" for chunk in re.split(r'(\s+)', ai_response): full_response += chunk + " " time.sleep(0.01) message_placeholder.markdown(full_response + "▌") st.session_state.messages.append({"role": "assistant", "content": full_response}) st.sidebar.title("Upload your file") uploaded_files = st.sidebar.file_uploader("Choose a file", accept_multiple_files=True, type=['docx', 'doc', 'odt', 'pptx', 'ppt', 'xlsx', 'csv', 'tsv', 'eml', 'msg', 'rtf', 'epub', 'html', 'xml', 'pdf', 'png', 'jpg', 'heic','txt']) print(f'uploaded-files : {uploaded_files}') for uploaded_file in uploaded_files: print('count') elements = partition(file=uploaded_file, strategy='hi_res', skip_infer_table_types=['png', 'pdf', 'jpg', 'xls', 'xlsx', 'heic'], hi_res_model_name='yolox', include_page_breaks=True ) docs = [Document(elem.text) for elem in elements] chunks, dense_embeddings, sparse_embeddings = chunk_documents(docs, dense_model, sparse_model) client.upsert( collection_name, make_points( chunks, dense_embeddings, sparse_embeddings ) )