devve1's picture
Update app.py
5209cca verified
raw
history blame
No virus
14.1 kB
import os
import re
import time
import msgpack
import numpy as np
import streamlit as st
from numpy import ndarray
from scipy.sparse import csr_matrix, save_npz, load_npz, vstack
from qdrant_client import QdrantClient, models
from fastembed.sparse.splade_pp import supported_splade_models
from fastembed import SparseTextEmbedding, SparseEmbedding
from fastembed_ext import FastEmbedEmbeddingsLc
from langchain_community.llms.exllamav2 import ExLlamaV2
from langchain_community.document_loaders.wikipedia import WikipediaLoader
from langchain_community.document_loaders.unstructured import UnstructuredFileLoader
from langchain_core.prompts import PromptTemplate
from langchain.chains.summarize import load_summarize_chain
from langchain_experimental.text_splitter import SemanticChunker
from langchain_core.documents import Document
from huggingface_hub import snapshot_download
from langchain_community.llms.exllamav2 import ExLlamaV2 as ExLlamaV2Lc
from exllamav2 import ExLlamaV2Cache_Q4, ExLlamaV2Config, ExLlamaV2, ExLlamaV2Tokenizer
from exllamav2.generator import ExLlamaV2DynamicGenerator, ExLlamaV2Sampler
from qdrant_client.models import (
NamedSparseVector,
NamedVector,
SparseVector,
PointStruct,
SearchRequest,
ScoredPoint,
)
MAP_PROMPT = """
You will be given a single passage of a book. This section will be enclosed in triple backticks (```)
Your goal is to give a summary of this section so that a reader will have a full understanding of what happened.
Your response should be at least three paragraphs and fully encompass what said in the passage.
```{text}```
FULL SUMMARY:
"""
COMBINE_PROMPT = """
You will be given a series of summaries from a book. The summaries will be enclosed in triple backticks (```)
Your goal is to give a verbose summary of what happened in the story.
The reader should be able to grasp what happened in the book.
```{text}```
VERBOSE SUMMARY:
"""
def make_points(chunks: list[str], dense: list[ndarray], sparse: list[SparseEmbedding])-> list[PointStruct]:
points = []
for idx, (sparse_vector, chunk, dense_vector) in enumerate(zip(sparse, chunks, dense)):
sparse_vector = SparseVector(indices=sparse_vector.indices.tolist(), values=sparse_vector.values.tolist())
point = PointStruct(
id=idx,
vector={
"text-sparse": sparse_vector,
"text-dense": dense_vector,
},
payload={
"text": chunk
}
)
points.append(point)
return points
def search(client: QdrantClient, collection_name: str, dense: ndarray, sparse: list[SparseEmbedding]):
search_results = client.search_batch(
collection_name,
[
SearchRequest(
vector=NamedVector(
name="text-dense",
vector=dense,
),
limit=10
),
SearchRequest(
vector=NamedSparseVector(
name="text-sparse",
vector=SparseVector(
indices=sparse[0].indices.tolist(),
values=sparse[0].values.tolist(),
),
),
limit=10
),
],
)
return search_results
def rank_list(search_result: list[ScoredPoint]):
return [(point.id, rank + 1) for rank, point in enumerate(search_result)]
def rrf(rank_lists, alpha=60, default_rank=1000):
"""
Optimized Reciprocal Rank Fusion (RRF) using NumPy for large rank lists.
:param rank_lists: A list of rank lists. Each rank list should be a list of (item, rank) tuples.
:param alpha: The parameter alpha used in the RRF formula. Default is 60.
:param default_rank: The default rank assigned to items not present in a rank list. Default is 1000.
:return: Sorted list of items based on their RRF scores.
"""
all_items = set(item for rank_list in rank_lists for item, _ in rank_list)
item_to_index = {item: idx for idx, item in enumerate(all_items)}
rank_matrix = np.full((len(all_items), len(rank_lists)), default_rank)
for list_idx, rank_list in enumerate(rank_lists):
for item, rank in rank_list:
rank_matrix[item_to_index[item], list_idx] = rank
rrf_scores = np.sum(1.0 / (alpha + rank_matrix), axis=1)
sorted_indices = np.argsort(-rrf_scores)
sorted_items = [(list(item_to_index.keys())[idx], rrf_scores[idx]) for idx in sorted_indices]
return sorted_items
def main(query: str, client: QdrantClient, collection_name: str, llm, dense_model: FastEmbedEmbeddingsLc, sparse_model: SparseTextEmbedding):
# name = 'Kia_EV6'
# filepath = os.path.join(os.getcwd(), name + '.pdf')
# docs = UnstructuredFileLoader(
# file_path=filepath,
# mode='elements',
# strategy='hi_res',
# skip_infer_table_types=['png', 'pdf', 'jpg', 'xls', 'xlsx', 'heic'],
# hi_res_model_name='yolox',
# include_page_breaks=True
# )
# docs = docs.load()
dense_query = list(dense_model.embed_query(query, 32))
sparse_query = list(sparse_model.embed(query, 32))
search_results = search(
client,
collection_name,
dense_query,
sparse_query
)
dense_rank_list, sparse_rank_list = rank_list(search_results[0]), rank_list(search_results[1])
rrf_rank_list = rrf([dense_rank_list, sparse_rank_list])
records_list = client.retrieve(
collection_name,
[item[0] for item in rrf_rank_list]
)
docs = [Document(record.payload['text']) for record in records_list[:3]]
map_prompt = PromptTemplate(
template=MAP_PROMPT,
input_variables=['text']
)
combine_prompt = PromptTemplate(
template=COMBINE_PROMPT,
input_variables=['text']
)
map_chain = load_summarize_chain(llm,
"stuff",
prompt=map_prompt
)
summary_list = []
for doc in docs:
chunk_summary = map_chain.invoke([doc])
summary_list.append(chunk_summary['output_text'])
summaries = Document(page_content="\n".join(summary_list))
reduce_chain = load_summarize_chain(llm,
"stuff",
prompt=combine_prompt
)
output = reduce_chain.invoke([summaries])
return output['output_text']
def load_models_and_documents():
supported_splade_models[0] = {
"model": "prithivida/Splade_PP_en_v2",
"vocab_size": 30522,
"description": "Implementation of SPLADE++ Model for English v2",
"size_in_GB": 0.532,
"sources": {
"hf": "devve1/Splade_PP_en_v2_onnx"
},
"model_file": "model.onnx"
}
with st.spinner('Load models...'):
model_path = snapshot_download(repo_id='Zoyd/NousResearch_Hermes-2-Theta-Llama-3-8B-6_5bpw_exl2')
config = ExLlamaV2Config(model_dir=model_path)
config.prepare()
model = ExLlamaV2(config)
tokenizer = ExLlamaV2Tokenizer(model_path)
cache = ExLlamaV2Cache_Q4(model, max_seq_len=8192, lazy=True)
model.load_autosplit()
generator = ExLlamaV2DynamicGenerator(model, cache, tokenizer)
settings = ExLlamaV2Sampler().Settings()
settings.temperature = 0.75
llm = ExLlamaV2Lc(generator=generator,
max_new_tokens=3000,
disallowed_tokens=[tokenizer.eos_token_id]
)
provider = ['CPUExecutionProvider']
dense_model = FastEmbedEmbeddingsLc(
model_name='mixedbread-ai/mxbai-embed-large-v1',
providers=provider,
cache_dir=os.getenv('HF_HOME'),
batch_size=32
)
sparse_model = SparseTextEmbedding(
'Qdrant/bm42-all-minilm-l6-v2-attentions',
cache_dir=os.getenv('HF_HOME'),
providers=provider
)
client = QdrantClient(path=os.getenv('HF_HOME'))
collection_name = 'collection_demo'
if not client.collection_exists(collection_name):
client.create_collection(
collection_name,
{
"text-dense": models.VectorParams(
size=1024,
distance=models.Distance.COSINE,
on_disk=True,
quantization_config=models.BinaryQuantization(
binary=models.BinaryQuantizationConfig(
always_ram=False
)
)
)
},
{
"text-sparse": models.SparseVectorParams(
index=models.SparseIndexParams(
on_disk=True,
modifier='idf'
)
)
},
2,
on_disk_payload=True,
optimizers_config=models.OptimizersConfigDiff(
memmap_threshold=10000,
indexing_threshold=0
),
hnsw_config=models.HnswConfigDiff(
on_disk=True,
m=16,
ef_construct=100
)
)
with st.spinner('Parse and chunk documents...'):
name = 'action_rpg'
embeddings_path = os.path.join(os.getenv('HF_HOME'), 'collection', 'embeddings')
chunks_path = os.path.join(embeddings_path, name + '_chunks.msgpack')
dense_path = os.path.join(embeddings_path, name + '_dense.npz')
sparse_path = os.path.join(embeddings_path, name + '_sparse.npz')
if not os.path.exists(embeddings_path):
os.mkdir(embeddings_path)
docs = WikipediaLoader(query='Action-RPG').load()
chunks, dense_embeddings, sparse_embeddings = chunk_documents(docs, dense_model, sparse_model)
with open(chunks_path, "wb") as outfile:
packed = msgpack.packb(chunks, use_bin_type=True)
outfile.write(packed)
np.savez_compressed(dense_path, *dense_embeddings)
max_index = max(np.max(embedding.indices) for embedding in sparse_embeddings)
sparse_matrices = []
for embedding in sparse_embeddings:
data = embedding.values
indices = embedding.indices
indptr = np.array([0, len(data)])
matrix = csr_matrix((data, indices, indptr), shape=(1, max_index + 1))
sparse_matrices.append(matrix)
combined_sparse_matrix = vstack(sparse_matrices)
save_npz(sparse_path, combined_sparse_matrix)
else:
with open(chunks_path, "rb") as data_file:
byte_data = data_file.read()
chunks = msgpack.unpackb(byte_data, raw=False)
dense_embeddings = list(np.load(dense_path).values())
sparse_embeddings = []
loaded_sparse_matrix = load_npz(sparse_path)
for i in range(loaded_sparse_matrix.shape[0]):
row = loaded_sparse_matrix.getrow(i)
values = row.data
indices = row.indices
embedding = SparseEmbedding(values, indices)
sparse_embeddings.append(embedding)
with st.spinner('Save documents...'):
client.upsert(
collection_name,
make_points(
chunks,
dense_embeddings,
sparse_embeddings
)
)
client.update_collection(
collection_name=collection_name,
optimizer_config=models.OptimizersConfigDiff(indexing_threshold=20000)
)
return client, collection_name, llm, dense_model, sparse_model
def chunk_documents(docs, dense_model, sparse_model):
text_splitter = SemanticChunker(
dense_model,
breakpoint_threshold_type='standard_deviation'
)
documents = [doc.page_content for doc in text_splitter.transform_documents(list(docs))]
dense_embeddings = dense_model.embed_documents(documents,32)
sparse_embeddings = list(sparse_model.embed(documents, 32))
return documents, dense_embeddings, sparse_embeddings
if __name__ == '__main__':
st.set_page_config(page_title="Video Game Assistant",
layout="wide"
)
st.title("Video Game Assistant :sunglasses:")
if 'models_loaded' not in st.session_state:
st.session_state.client, st.session_state.collection_name, st.session_state.llm, st.session_state.dense_model, st.session_state.sparse_model = load_models_and_documents()
st.session_state.models_loaded = True
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Message Video Game Assistant"):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
ai_response = main(prompt, st.session_state.client, st.session_state.collection_name, st.session_state.llm, st.session_state.dense_model, st.session_state.sparse_model)
response = f"Echo: {ai_response}"
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
for chunk in re.split(r'(\s+)', response):
full_response += chunk + " "
time.sleep(0.01)
message_placeholder.markdown(full_response + "▌")
st.session_state.messages.append({"role": "assistant", "content": full_response})