File size: 19,052 Bytes
a267b49
44b8cfd
03c7545
 
a267b49
4364a50
6143b5b
15d08bb
a267b49
 
6af775d
a267b49
8b80e7e
6143b5b
e7d4e44
15d08bb
a267b49
41791ed
 
 
32863e8
a267b49
 
 
 
 
 
 
 
 
8053dc6
0044e73
8053dc6
41791ed
a267b49
 
 
4b484d7
a267b49
 
 
8053dc6
 
a267b49
 
0044e73
 
a267b49
41791ed
e7d4e44
a267b49
 
 
 
 
 
 
 
 
 
 
 
 
41791ed
 
a267b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07817ac
41791ed
 
a267b49
e7d4e44
a267b49
 
 
41791ed
a267b49
 
 
 
 
e7d4e44
a267b49
aee31d5
a267b49
 
8324d7c
 
 
a267b49
8324d7c
69d7f54
 
f368b42
19a1340
69d7f54
 
 
 
07817ac
3a6368c
 
846607c
3a6368c
 
07817ac
3a6368c
635354c
2368f18
d7523dd
856a4a9
a648bb8
3a6368c
 
b6fc313
 
3a6368c
 
 
b6fc313
 
 
 
 
3a6368c
635354c
8324d7c
 
854bce1
8324d7c
856a4a9
9cc997c
 
 
 
c42b490
a267b49
2e9ebb3
a91bbdd
3c8327a
41791ed
 
 
 
 
 
 
 
 
 
 
6143b5b
a648bb8
 
 
 
c7e3833
 
a648bb8
6143b5b
215effb
a873789
41791ed
 
 
 
 
 
 
 
 
 
 
 
 
a91bbdd
03c7545
 
 
8ebc68d
4b02c5c
 
635fbe7
 
 
 
 
 
 
 
 
 
4b02c5c
 
635fbe7
 
 
 
 
 
4b02c5c
 
635fbe7
 
 
7fa522a
5ad16c8
635fbe7
 
 
5ad16c8
 
4b02c5c
635fbe7
6143b5b
 
 
5b2e3d1
6143b5b
8053dc6
 
6143b5b
 
 
 
 
 
731b64e
846607c
 
 
 
 
6143b5b
8053dc6
 
 
828cea7
b256ccf
828cea7
8053dc6
 
 
 
 
 
 
 
 
 
6143b5b
 
41791ed
6143b5b
 
41791ed
 
 
6143b5b
41791ed
6143b5b
 
 
 
 
8053dc6
 
 
 
 
6143b5b
7206d43
 
6143b5b
 
 
41791ed
6143b5b
 
 
 
41791ed
 
 
 
6143b5b
 
 
 
 
7206d43
 
6143b5b
41791ed
6143b5b
a5251d9
0044e73
 
 
 
4b02c5c
2f5d09f
fc24904
8053dc6
fc24904
 
 
 
 
03c7545
165e041
8053dc6
77ed01c
03c7545
77ed01c
 
03c7545
77ed01c
 
8053dc6
 
 
77ed01c
165e041
03c7545
165e041
8053dc6
 
fc24904
8053dc6
abbb034
41211c0
07817ac
9cc997c
abbb034
 
 
 
 
 
 
 
9cc997c
abbb034
 
 
 
b1136c7
 
8caba9f
abbb034
fc24904
 
8a07a6e
fc24904
6143b5b
8a07a6e
90a0803
07817ac
cf64da1
9cc997c
cf64da1
 
d160dd3
cf64da1
d160dd3
cf64da1
 
41211c0
 
 
6143b5b
2f5d09f
785300a
31b1908
 
 
 
 
 
 
 
 
 
 
9cc997c
31b1908
 
 
9cc997c
31b1908
 
 
1d66c65
31b1908
15d08bb
 
 
f5e1bf6
15d08bb
 
bd36946
 
 
538366e
 
bd36946
15d08bb
 
 
 
 
 
 
 
 
 
 
 
bc5ed12
15d08bb
972331c
3c8327a
32863e8
3c8327a
8795d75
942c7ba
 
b256ccf
942c7ba
 
caa9d03
1d66c65
 
69d7f54
1d66c65
caa9d03
76bbb30
1d66c65
8053dc6
95cc292
 
 
8053dc6
 
95cc292
 
 
bc5ed12
90a0803
 
b1136c7
feb3f00
 
abbb034
cb5e104
abbb034
 
41211c0
b1136c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import os
import re
import nltk
import copy
import time
import joblib
import msgpack
import validators
import numpy as np
import streamlit as st
from io import BytesIO
from numpy import ndarray
from llama_cpp import Llama
from scipy.sparse import csr_matrix, save_npz, load_npz, vstack
from qdrant_client import QdrantClient, models
from langchain_community.document_loaders import WikipediaLoader, WebBaseLoader
from langchain_experimental.text_splitter import SemanticChunker
from fastembed.sparse.splade_pp import supported_splade_models
from fastembed import SparseTextEmbedding, SparseEmbedding
from fastembed_ext import FastEmbedEmbeddingsLc
from unstructured.partition.auto import partition
from qdrant_client.models import (
    NamedSparseVector,
    NamedVector,
    SparseVector,
    PointStruct,
    SearchRequest,
    ScoredPoint,
)

def make_points(texts: list, metadatas: list, dense: list[ndarray], sparse: list[SparseEmbedding])-> list[PointStruct]:
    points = []
    for idx, (text, metadata, sparse_vector, dense_vector) in enumerate(zip(texts, metadatas, sparse, dense)):
        sparse_vec = SparseVector(indices=sparse_vector.indices.tolist(), values=sparse_vector.values.tolist())
        point = PointStruct(
            id=idx,
            vector={
                "text-sparse": sparse_vec,
                "text-dense": dense_vector,
            },
            payload={
                "text": text,
                "metadata": metadata
            }
        )
        points.append(point)
    return points

def search(client: QdrantClient, collection_name: str, dense, sparse):
    search_results = client.search_batch(
        collection_name,
        [
            SearchRequest(
                vector=NamedVector(
                    name="text-dense",
                    vector=dense,
                ),
                limit=10
            ),
            SearchRequest(
                vector=NamedSparseVector(
                    name="text-sparse",
                    vector=SparseVector(
                        indices=sparse[0].indices.tolist(),
                        values=sparse[0].values.tolist(),
                    ),
                ),
                limit=10
            ),
        ],
    )

    return search_results

def rank_list(search_result: list[ScoredPoint]):
    return [(point.id, rank + 1) for rank, point in enumerate(search_result)]

def rrf(rank_lists, alpha=60, default_rank=1000):
    """
    Optimized Reciprocal Rank Fusion (RRF) using NumPy for large rank lists.

    :param rank_lists: A list of rank lists. Each rank list should be a list of (item, rank) tuples.
    :param alpha: The parameter alpha used in the RRF formula. Default is 60.
    :param default_rank: The default rank assigned to items not present in a rank list. Default is 1000.
    :return: Sorted list of items based on their RRF scores.
    """
    all_items = set(item for rank_list in rank_lists for item, _ in rank_list)
    item_to_index = {item: idx for idx, item in enumerate(all_items)}
    rank_matrix = np.full((len(all_items), len(rank_lists)), default_rank)

    for list_idx, rank_list in enumerate(rank_lists):
        for item, rank in rank_list:
            rank_matrix[item_to_index[item], list_idx] = rank

    rrf_scores = np.sum(1.0 / (alpha + rank_matrix), axis=1)
    sorted_indices = np.argsort(-rrf_scores)
    sorted_items = [(list(item_to_index.keys())[idx], rrf_scores[idx]) for idx in sorted_indices]

    return sorted_items


def main(query: str, client: QdrantClient, collection_name: str, llm, dense_model, sparse_model):
    dense_query = list(dense_model.embed_query(query, 32))
    sparse_query = list(sparse_model.embed(query, 32))

    search_results = search(
        client,
        collection_name,
        dense_query,
        sparse_query
    )

    dense_rank_list, sparse_rank_list = rank_list(search_results[0]), rank_list(search_results[1])
    rrf_rank_list = rrf([dense_rank_list, sparse_rank_list])

    records_list = client.retrieve(
        collection_name,
        [item[0] for item in rrf_rank_list]
    )
    
    docs = [record.payload for record in records_list[:3]]
    contents = [doc['text'] for doc in docs]
    metadatas = [doc['metadata'] for doc in docs]

    context = "\n".join(contents)
    
    seen_values = set()
    result_metadatas = "\n\n".join(
        f'{value}'
        for metadata in metadatas
        for key, value in metadata.items()
        if (value not in seen_values and not seen_values.add(value))
    )
    print(f'QA_PROMPT : {st.session_state.qa_prompt}')
    response = llm.create_chat_completion(
        messages = [
          {"role": "system", "content": "You are a helpful assistant."},
          {
              "role": "user",
              "content": st.session_state.qa_prompt(query, context)
          }
      ], temperature=0, frequency_penalty=0.2, presence_penalty=0.4, top_p=0.2)

    text = response["choices"][0]["message"]['content']
    print(f'TEXT: {text}')

    output = llm.create_chat_completion(
        messages = [
          {"role": "system", "content": """Act like a professional summary writer. You have been providing summarization services for various types of documents, including academic papers, legal texts, and business reports, for over 20 years. 
          Your expertise includes extracting key points and important details concisely without adding unnecessary introductory phrases."""
          },
          {
              "role": "user",
              "content": f"""Write a summary of the following text delimited by triple backquotes. Ensure the summary covers the key points of the text. Do not introduce the summary with sentences like "Here is the summary:" or similar. The summary should be detailed, precise, and directly convey the essential information from the text.
              
              ```{text}```
              
              Take a deep breath and work on this problem step-by-step."""
          }
      ], temperature=0.7, max_tokens=3000)
    
    answer = output['choices'][0]['message']['content']
    answer_with_metadatas = f"{answer}\n\n\nSource(s) :\n\n{result_metadatas}"
    
    print(f'OUTPUT: {output}')

    if st.session_state.documents_only:
        return answer if 'no_answer' in text else answer_with_metadatas
    else:
        return f'Internal Knowledge :\n\n{answer}' if 'knowledge_topic' in text else f'Documents Based :\n\n{answer_with_metadatas}'

@st.cache_resource
def load_models_and_documents():
    print('load')
    supported_splade_models[0] = {
        "model": "prithivida/Splade_PP_en_v2",
        "vocab_size": 30522,
        "description": "Implementation of SPLADE++ Model for English v2",
        "size_in_GB": 0.532,
        "sources": {
            "hf": "devve1/Splade_PP_en_v2_onnx"
        },
        "model_file": "model.onnx"
    }
    
    with st.spinner('Load models...'):
        llm = Llama.from_pretrained(
            repo_id="MaziyarPanahi/Llama-3-8B-Instruct-32k-v0.1-GGUF",
            filename="*Q8_0.gguf",
            verbose=False,
            chat_format="llama-3",
            n_ctx=16384,
            n_gpu_layers=32
        )

        provider = ['CPUExecutionProvider']
        
        dense_model = FastEmbedEmbeddingsLc(
            model_name='mixedbread-ai/mxbai-embed-large-v1',
            providers=provider,
            cache_dir=os.getenv('HF_HOME'),
            batch_size=32
        )
        
        sparse_model = SparseTextEmbedding(
            'prithivida/Splade_PP_en_v2',
            cache_dir=os.getenv('HF_HOME'),
            providers=provider
        )

        nltk.download('punkt')
        nltk.download('averaged_perceptron_tagger')

    client = QdrantClient(':memory:')
    collection_name = 'collection_demo'
    
    client.create_collection(
        collection_name,
        {
            "text-dense": models.VectorParams(
                size=1024,
                distance=models.Distance.COSINE,
                on_disk=False,
                quantization_config=models.BinaryQuantization(
                    binary=models.BinaryQuantizationConfig(
                        always_ram=True
                    )
                )
            )
        },
        {
            "text-sparse": models.SparseVectorParams(
                index=models.SparseIndexParams(
                    on_disk=False
                )
            )
        },
        2,
        optimizers_config=models.OptimizersConfigDiff(
            indexing_threshold=0,
            default_segment_number=4
        ),
        hnsw_config=models.HnswConfigDiff(
            on_disk=False, 
            m=64,
            ef_construct=512
        )
    )
        
    with st.spinner('Parse and chunk documents...'):
        name = 'action_rpg'
        embeddings_path = os.path.join(os.getenv('HF_HOME'), 'embeddings')

        texts_path = os.path.join(embeddings_path, name + '_texts.msgpack')
        metadatas_path = os.path.join(embeddings_path, name + '_metadatas.msgpack')
        dense_path = os.path.join(embeddings_path, name + '_dense.npz')
        sparse_path = os.path.join(embeddings_path, name + '_sparse.npz')

        if not os.path.exists(embeddings_path):
            os.mkdir(embeddings_path)

            docs_1 = WikipediaLoader(query='Action-RPG').load()
            docs_2 = WikipediaLoader(query='Real-time strategy').load()
            docs_3 = WikipediaLoader(query='First-person shooter').load()
            docs_4 = WikipediaLoader(query='Multiplayer online battle arena').load()
            docs_5 = WikipediaLoader(query='List of video game genres').load()
            docs = docs_1 + docs_2 + docs_3 + docs_4 + docs_5

            texts, metadatas = [], []
            for doc in docs:
                texts.append(doc.page_content)
                del doc.metadata['title']
                del doc.metadata['summary']
                metadatas.append(doc.metadata)
            
            docs_texts, docs_metadatas, dense_embeddings, sparse_embeddings = chunk_documents(texts, metadatas, dense_model, sparse_model)

            with open(texts_path, "wb") as outfile_texts:
                packed_texts = msgpack.packb(docs_texts, use_bin_type=True)
                outfile_texts.write(packed_texts)

            with open(metadatas_path, "wb") as outfile_metadatas:
                packed_metadatas = msgpack.packb(docs_metadatas, use_bin_type=True)
                outfile_metadatas.write(packed_metadatas)
            
            np.savez_compressed(dense_path, *dense_embeddings)
            max_index = max(np.max(embedding.indices) for embedding in sparse_embeddings)
        
            sparse_matrices = []
            for embedding in sparse_embeddings:
                data = embedding.values
                indices = embedding.indices
                indptr = np.array([0, len(data)])
                matrix = csr_matrix((data, indices, indptr), shape=(1, max_index + 1))
                sparse_matrices.append(matrix)
            
            combined_sparse_matrix = vstack(sparse_matrices)
            save_npz(sparse_path, combined_sparse_matrix)
        else:
            with open(texts_path, "rb") as data_file_texts:
                byte_data_texts = data_file_texts.read()
                
            with open(metadatas_path, "rb") as data_file_metadatas:
                byte_data_metadatas = data_file_metadatas.read()
                
            docs_texts = msgpack.unpackb(byte_data_texts, raw=False)
            docs_metadatas = msgpack.unpackb(byte_data_metadatas, raw=False)

            dense_embeddings = list(np.load(dense_path).values())

            sparse_embeddings = []
            loaded_sparse_matrix = load_npz(sparse_path)
        
            for i in range(loaded_sparse_matrix.shape[0]):
                row = loaded_sparse_matrix.getrow(i)
                values = row.data
                indices = row.indices
                embedding = SparseEmbedding(values, indices)
                sparse_embeddings.append(embedding)

    with st.spinner('Save documents...'):
        client.upsert(
            collection_name,
            make_points(
                docs_texts, 
                docs_metadatas,
                dense_embeddings, 
                sparse_embeddings
            )
        )
    client.update_collection(
        collection_name=collection_name,
        optimizer_config=models.OptimizersConfigDiff(indexing_threshold=20000)
    )

    return client, collection_name, llm, dense_model, sparse_model

def chunk_documents(texts, metadatas, dense_model, sparse_model):
    text_splitter = SemanticChunker(
        dense_model,
        breakpoint_threshold_type='standard_deviation'
    )

    _metadatas = metadatas or [{}] * len(texts)
    documents = []
    metadatas_docs = []

    def create_document(text: str, i: int, _metadatas: list):
        index = -1
        for chunk in text_splitter.split_text(text):
            metadata = copy.deepcopy(_metadatas[i])
            if text_splitter._add_start_index:
                index = text.find(chunk, index + 1)
                metadata['start_index'] = index      
        documents.append(chunk)
        metadatas_docs.append(metadata)
        
    joblib.Parallel(n_jobs=joblib.cpu_count(), verbose=1, require='sharedmem')(
        joblib.delayed(create_document)(text, i, _metadatas) for i, text in enumerate(texts))

    dense_embeddings = dense_model.embed_documents(documents, 32)
    sparse_embeddings = list(sparse_model.embed(documents, 32))
    
    return documents, metadatas_docs, dense_embeddings, sparse_embeddings

def on_change_documents_only():
    st.session_state.qa_prompt = lambda query, context: (
        f"""You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, reply with 'no_answer'. Use three sentences maximum and keep the answer concise.
        
        Question: {query} 
              
        Context: {context} 
              
        Answer:"""
        
        if st.session_state.documents_only else 
        f"""If the context is not relevant, please answer the question by using your own knowledge about the topic and write on top of your answer 'knowledge_topic'
        
        {context}

        Question: {query}"""
    )
    
    st.session_state.tooltip = 'The AI answer your questions only considering the documents provided' if st.session_state.documents_only else """The AI answer your questions considering the documents provided, and if it doesn't found the answer in them, try to find in its own internal knowledge"""
    
    
if __name__ == '__main__':
    st.set_page_config(page_title="Multipurpose AI Agent",
                       layout="wide"
                       )
    st.title("Multipurpose AI Agent")

    if "qa_prompt" not in st.session_state:
        st.session_state.qa_prompt = lambda query, context: (
            f"""You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, reply with 'no_answer'. Use three sentences maximum and keep the answer concise.
            
            Question: {query} 
              
            Context: {context} 
              
            Answer:"""
        )

    if "tooltip" not in st.session_state:
        st.session_state.tooltip = 'The AI answer your questions only considering the documents provided'
    
    client, collection_name, llm, dense_model, sparse_model = load_models_and_documents()

    if "messages" not in st.session_state:
        st.session_state.messages = []

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if prompt := st.chat_input("Message Video Game Assistant"):
        st.chat_message("user").markdown(prompt)
        st.session_state.messages.append({"role": "user", "content": prompt})

        ai_response = main(prompt, client, collection_name, llm, dense_model, sparse_model)
        with st.chat_message("assistant"):
            message_placeholder = st.empty()
            full_response = ""
            for chunk in re.split(r'(\s+)', ai_response):
                full_response += chunk + " "
                time.sleep(0.01)
                message_placeholder.markdown(full_response + "▌")
        st.session_state.messages.append({"role": "assistant", "content": full_response})

    url = st.sidebar.text_input("Scrape an URL link :")
    if validators.url(url):
        docs = WebBaseLoader(url).load()
        print(f'WebBaseLoader: {docs[0].metadata}')
        
        texts, metadatas = [], []
        for doc in docs:
            texts.append(doc.page_content)
            del doc.metadata['title']
            del doc.metadata['description']
            del doc.metadata['language']
            metadatas.append(doc.metadata)

        texts, metadatas, dense_embeddings, sparse_embeddings = chunk_documents(texts, metadatas, dense_model, sparse_model)
        
        client.upsert(
            collection_name,
            make_points(
                texts,
                metadatas,
                dense_embeddings, 
                sparse_embeddings
            )
        )
        st.sidebar.success("URL content uploaded and ready!")

    uploaded_files = st.sidebar.file_uploader("Upload a file :", accept_multiple_files=True, type=['docx', 'doc', 'odt', 'pptx', 'ppt', 'xlsx', 'csv', 'tsv', 'eml', 'msg', 'rtf', 'epub', 'html', 'xml', 'pdf', 'png', 'jpg', 'heic','txt'])
    print(f'uploaded-files : {uploaded_files}')
    for uploaded_file in uploaded_files:
        print('count')
        elements = partition(file=uploaded_file,
                             strategy='hi_res',
                             skip_infer_table_types=['png', 'pdf', 'jpg', 'xls', 'xlsx', 'heic'],
                             hi_res_model_name='yolox',
                             include_page_breaks=True
                            )
        metadata_dict = {"source": uploaded_file.name}
        
        texts, metadatas = [], []
        for elem in elements:
            texts.append(elem.text)
            metadatas.append(metadata_dict)

        texts, metadatas, dense_embeddings, sparse_embeddings = chunk_documents(texts, metadatas, dense_model, sparse_model)
        
        client.upsert(
            collection_name,
            make_points(
                texts,
                metadatas,
                dense_embeddings, 
                sparse_embeddings
            )
        )
        st.sidebar.success("Document content uploaded and ready!")

    tooltip = 'The AI answer your questions only considering the documents provided'
    
    st.sidebar.toggle(
        label="""Enable 'Documents-Only' Mode""", 
        value=True, 
        on_change=on_change_documents_only, 
        key="documents_only",
        help=st.session_state.tooltip
    )