import os from googleapiclient.discovery import build import pandas as pd import numpy as np from urllib.parse import urlparse, parse_qs from transformers import pipeline from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification from scipy.special import softmax import gradio as gr api_key = os.environ['api_key'] youtube_api = build('youtube','v3',developerKey=api_key) #Get top 100 comments and make a dataframe def get_comment_data(youtube_id): request = youtube_api.commentThreads().list(part="snippet", videoId= youtube_id, maxResults=100, order="relevance", textFormat="plainText") response = request.execute() comments = [[comment['snippet']['topLevelComment']['snippet']['textDisplay'], comment['snippet']['topLevelComment']['snippet']['likeCount']] for comment in response['items']] df = pd.DataFrame(comments, columns=['Comment_Text', 'Like_Count']) return df #Get title and thumbnail def get_vid_details(youtube_link): youtube_id = get_video_id(youtube_link) request = youtube_api.videos().list( part="snippet", id= youtube_id ) response = request.execute() return response['items'][0]['snippet']['title'],response['items'][0]['snippet']['channelTitle'],response['items'][0]['snippet']['thumbnails']['high']['url'] #In case we ever want all comments def get_all_comments(youtube_id): comments = [[]] next_page_token = None while True: request = youtube_api.commentThreads().list(part="snippet", videoId= youtube_id, maxResults=100, pageToken=next_page_token, order="relevance", textFormat="plainText") response = request.execute() for item in response['items']: comments.append([item['snippet']['topLevelComment']['snippet']['textDisplay'], item['snippet']['topLevelComment']['snippet']['likeCount']]) if 'nextPageToken' in response: next_page_token = response['nextPageToken'] else: break df = pd.DataFrame(comments, columns=['Comment_Text', 'Like_Count']) return df #Get all videos from a creator def get_channel_videos(channel_id): all_videos=[] # Initial request to retrieve the channel's uploaded videos request = youtube_api.search().list( part='id', channelId=channel_id, maxResults=50 # Adjust as needed ) while request is not None: response = request.execute() for item in response.get('items', []): if item['id']['kind'] == 'youtube#video': all_videos.append(item['id']['videoId']) request = youtube_api.search().list_next(request, response) return all_videos #Pass a valid youtube video url or else function will not work def get_video_id(url): parsed_url = urlparse(url) return parse_qs(parsed_url.query)['v'][0] #Set up the model and tokenizer MODEL = f"cardiffnlp/twitter-roberta-base-sentiment" MODEL2 = "SamLowe/roberta-base-go_emotions" tokenizer = AutoTokenizer.from_pretrained(MODEL) tokenizer2 = AutoTokenizer.from_pretrained(MODEL2) model = AutoModelForSequenceClassification.from_pretrained(MODEL) model2 = AutoModelForSequenceClassification.from_pretrained(MODEL2) classifier = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None) def generate_sentiments(df, progress=gr.Progress()): #Set up lists to add to dataframe pos_sent = [] neu_sent = [] neg_sent = [] feeling1 = [] feeling2 = [] feeling3 = [] for comment in progress.tqdm(df['Comment_Text'],desc="Analyzing Comments"): #Encode the comment and run roberta on it tokens = tokenizer.tokenize(comment) if len(tokens) > 514: tokens = tokens[:512] comment = tokenizer.convert_tokens_to_string(tokens) model_outputs = classifier(comment) top_three_feelings = "" #Top three sentiments, RoBERTa-based model sentiment1 = list(model_outputs[0][0].values())[0] sentiment2 = list(model_outputs[0][1].values())[0] sentiment3 = list(model_outputs[0][2].values())[0] feeling1.append(sentiment1) feeling2.append(sentiment2) feeling3.append(sentiment3) encoded_comment = tokenizer(comment, return_tensors='pt') output = model(**encoded_comment) result = output[0][0].detach().numpy() #Convert the numbers to be between 0 and 1 to do analysis with it result = softmax(result) #Add results to the lists pos_sent.append(result[2]) neu_sent.append(result[1]) neg_sent.append(result[0]) #Add sentiments to the dataframe new_df = df.copy() new_df['Positive_Sentiment'] = pos_sent new_df['Neural_Sentiment'] = neu_sent new_df['Negative_Sentiment'] = neg_sent new_df['Feeling 1'] = feeling1 new_df['Feeling 2'] = feeling2 new_df['Feeling 3'] = feeling3 return new_df def addWeights(df,progress=gr.Progress()): df1 = generate_sentiments(df,progress) total_weights = df1['Like_Count'].sum() df1['Weights'] = df1['Like_Count'] / total_weights return df1 def three_most_common_words(words_list): word_counts = {} # Count the occurrences of each word for word in words_list: word_counts[word] = word_counts.get(word, 0) + 1 # Get the three most common words and their frequencies most_common_words = sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:3] return [item[0] for item in most_common_words] def getWeightSentimentAll(df, progress=gr.Progress()): df1 = addWeights(df,progress) #Start at default 0.5, add the results of positive sentiment and subtract negative sentiment total_sum = 0 for value1, value2 in zip(df1['Neural_Sentiment'], df1['Weights']): total_sum += value1 * value2 weighted_avg = (df1['Positive_Sentiment'] * df1['Weights']).sum() * 0.2699488 + total_sum * 0.53425314 - (df1['Negative_Sentiment'] * df1['Weights']).sum() * 0.3747967 + 0.5 df['Weighted Average'] = weighted_avg most_common_words = three_most_common_words(list(df1['Feeling 1']) + list(df1['Feeling 2']) + list(df1['Feeling 3'])) return str(int(weighted_avg*100)) + "%", *most_common_words def rate(youtube_url, progress=gr.Progress()): try: vid_id = get_video_id(youtube_url) vid_df = get_comment_data(vid_id) vid_sent = getWeightSentimentAll(vid_df,progress) return vid_sent except: raise gr.Error("Process failed. Ensure link is a valid YouTube URL") with gr.Blocks() as app: gr.Markdown(""" # Game Review Analysis Using Youtube ### Insert a YouTube URL to analyze the comments and get the population's review on the game! """ ) with gr.Tab("Video Rating"): input = gr.Textbox(label="YouTube URL", placeholder = "Place link here") output = gr.Textbox(label = "Community's Rating of the Game") with gr.Row(): feeling1 = gr.Textbox(label="Top 3 Feelings") feeling2 = gr.Textbox(label="") feeling3 = gr.Textbox(label="") rate_btn = gr.Button("Rate!") rate_btn.click(fn=rate, inputs=input,outputs=[output,feeling1,feeling2,feeling3]) with gr.Tab("Video Details"): input = gr.Textbox(label="Youtube URL", placeholder = "Place link here") title = gr.Textbox(label="Title") channel_name = gr.Textbox(label="Channel Name") thumbnail = gr.Image(label="Thumbnail") info_btn = gr.Button("Get Video Info!") info_btn.click(fn=get_vid_details, inputs=input, outputs=[title,channel_name,thumbnail]) app.launch()