jannisborn commited on
Commit
eee7fb1
·
unverified ·
1 Parent(s): 69c3e34
model_cards/article.md CHANGED
@@ -1,46 +1,57 @@
1
  # Model documentation & parameters
2
 
3
- **Language model**: Type of language model to be used.
 
 
 
4
 
5
- **Text prompt**: The text prompt to condition the model.
 
 
 
 
6
 
7
- **Maximal length**: The maximal number of SMILES tokens in the generated molecule.
 
 
8
 
9
- **Decoding temperature**: The temperature in the beam search decoding.
 
 
 
10
 
11
- **Prefix**: A text prompt that will be passed to the mode **before** the prompt.
12
 
13
- **Top-k**: Number of top-k probability tokens to keep.
 
 
14
 
15
- **Decoding-p**: Only tokens with cumulative probabilities summing up to this value are kept.
16
 
17
- **Repetition penalty**: Penalty for repeating tokens. Leave unchanged, but for CTRL model, use 1.2.
18
 
19
 
20
 
21
- # Model card -- HuggingFace
22
 
23
- **Model Details**: Various Transformer-based language models.
24
 
25
- **Developers**: HuggingFace developers
26
 
27
- **Distributors**: HuggingFace developers' code integrated into GT4SD.
28
 
29
- **Model date**: Varies between models.
30
 
31
- **Model type**: Different types of `transformers` language models:
32
- - CTRL: `CTRLLMHeadModel`
33
- - GPT2: `GPT2LMHeadModel`
34
- - XLNet: `XLNetLMHeadModel`
35
- - OpenAIGPT: `OpenAIGPTLMHeadModel`
36
- - TransfoXL: `TransfoXLLMHeadModel`
37
- - XLM: `XLMWithLMHeadModel`
38
 
39
  **Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
40
  N.A.
41
 
42
  **Paper or other resource for more information**:
43
- All documentation available from [transformers documentation](https://huggingface.co/docs/transformers/)
44
 
45
  **License**: MIT
46
 
@@ -64,15 +75,10 @@ Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi
64
 
65
  ## Citation
66
  ```bib
67
- @inproceedings{wolf-etal-2020-transformers,
68
- title = "Transformers: State-of-the-Art Natural Language Processing",
69
- author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
70
- booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
71
- month = oct,
72
- year = "2020",
73
- address = "Online",
74
- publisher = "Association for Computational Linguistics",
75
- url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
76
- pages = "38--45"
77
  }
78
  ```
 
1
  # Model documentation & parameters
2
 
3
+ **Model type**: Type of PGT model to be used:
4
+ - `PGTGenerator`: A model for part-of-patent generator
5
+ - `PGTEditor`: An algorithm for part-of-patent editing.
6
+ - `PGTCoherenceChecker`: An algorithm for patent coherence check
7
 
8
+ **Generator task**: Task in case the `PGTGenerator` model is used. Options are:
9
+ - `title-to-abstract`
10
+ - `abstract-to-title`
11
+ - `abstract-to-claim`
12
+ - `claim-to-abstract`
13
 
14
+ **Editor task**: Task in case the `PGTEditor` model is used. Options are:
15
+ - `abstract`
16
+ - `claim`
17
 
18
+ **Coherence task**: Task in case the `PGTCoherenceChecker` model is used. Options are:
19
+ - `title-abstract`
20
+ - `title-claim`
21
+ - `abstract-claim`
22
 
23
+ **Primary text prompt**: The main text prompt for the model
24
 
25
+ **Secondary text prompt**: The secondary text prompt for the model (only used for `PGTCoherenceChecker`).
26
+
27
+ **Maximal length**: The maximal number of tokens in the generated sequences.
28
 
29
+ **Top-k**: Number of top-k probability tokens to keep.
30
 
31
+ **Top-p**: Only tokens with cumulative probabilities summing up to this value are kept.
32
 
33
 
34
 
35
+ # Model card -- PatentGenerativeTransformer
36
 
37
+ **Model Details**: Patent Generative Transformer (PGT), a transformer-based multitask language model trained to facilitate the patent generation process. Published by [Christofidellis et al. (*ICML 2022 Workshop KRLM*)](https://openreview.net/forum?id=dLHtwZKvJmE)
38
 
39
+ **Developers**: Dimitrios Christofidellis and colleagues at IBM Research.
40
 
41
+ **Distributors**: Model natively integrated into GT4SD.
42
 
43
+ **Model date**: 2022.
44
 
45
+ **Model type**:
46
+ - `PGTGenerator`: A model for part-of-patent generator
47
+ - `PGTEditor`: An algorithm for part-of-patent editing.
48
+ - `PGTCoherenceChecker`: An algorithm for patent coherence check
 
 
 
49
 
50
  **Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
51
  N.A.
52
 
53
  **Paper or other resource for more information**:
54
+ The Patent Generative Transformer (PGT) [paper by Christofidellis et al. (*ICML 2022 Workshop KRLM*)](https://openreview.net/forum?id=dLHtwZKvJmE).
55
 
56
  **License**: MIT
57
 
 
75
 
76
  ## Citation
77
  ```bib
78
+ @inproceedings{christofidellis2022pgt,
79
+ title={PGT: a prompt based generative transformer for the patent domain},
80
+ author={Christofidellis, Dimitrios and Torres, Antonio Berrios and Dave, Ashish and Roveri, Manuel and Schmidt, Kristin and Swaminathan, Sarath and Vandierendonck, Hans and Zubarev, Dmitry and Manica, Matteo},
81
+ booktitle={ICML 2022 Workshop on Knowledge Retrieval and Language Models},
82
+ year={2022}
 
 
 
 
 
83
  }
84
  ```
model_cards/description.md CHANGED
@@ -1,6 +1,6 @@
1
  <img align="right" src="https://raw.githubusercontent.com/GT4SD/gt4sd-core/main/docs/_static/gt4sd_logo.png" alt="logo" width="120" >
2
 
3
- This UI gives access to some pretrained language models from [*HuggingFace*](https://github.com/huggingface/) that are distributed via GT4SD.
4
 
5
  For **examples** and **documentation** of the model parameters, please see below.
6
  Moreover, we provide a **model card** ([Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)) at the bottom of this page.
 
1
  <img align="right" src="https://raw.githubusercontent.com/GT4SD/gt4sd-core/main/docs/_static/gt4sd_logo.png" alt="logo" width="120" >
2
 
3
+ [Patent Generative Transformers (PGT)](https://openreview.net/forum?id=dLHtwZKvJmE): A prompt based generative transformer for the patent domain (Christofidellis et al., 2022; *ICLR Workshop KRLM*).
4
 
5
  For **examples** and **documentation** of the model parameters, please see below.
6
  Moreover, we provide a **model card** ([Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)) at the bottom of this page.