geodiff / app.py
Fskrt's picture
fix: examples convert to str
4c0e130
import logging
import pathlib
import pickle
import gradio as gr
from typing import Dict, Any
import pandas as pd
from gt4sd.algorithms.generation.diffusion import (
DiffusersGenerationAlgorithm,
GeoDiffGenerator,
)
from utils import draw_grid_generate
from rdkit import Chem
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
def run_inference(prompt_file: str, prompt_id: int, number_of_samples: int):
# Read file:
with open(prompt_file.name, "rb") as f:
prompts = pickle.load(f)
if all(isinstance(x, int) for x in prompts.keys()):
prompt = prompts[prompt_id]
else:
prompt = prompts
config = GeoDiffGenerator(prompt=prompt)
model = DiffusersGenerationAlgorithm(config)
results = list(model.sample(number_of_samples))
smiles = [Chem.MolToSmiles(m) for m in results]
return draw_grid_generate(samples=smiles, n_cols=5)
if __name__ == "__main__":
# Load metadata
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")
examples = [
[str(metadata_root.joinpath("mol_dct.pkl")), 0, 2],
[str(metadata_root.joinpath("mol_dct.pkl")), 1, 2],
]
with open(metadata_root.joinpath("article.md"), "r") as f:
article = f.read()
with open(metadata_root.joinpath("description.md"), "r") as f:
description = f.read()
demo = gr.Interface(
fn=run_inference,
title="GeoDiff",
inputs=[
gr.File(file_types=[".pkl"], label="GeoDiff prompt"),
gr.Number(value=0, label="Prompt ID", precision=0),
gr.Slider(minimum=1, maximum=5, value=2, label="Number of samples", step=1),
],
outputs=gr.HTML(label="Output"),
article=article,
description=description,
examples=examples,
)
demo.launch(debug=True, show_error=True)