|
import glob, os, sys; sys.path.append('../utils') |
|
|
|
|
|
import seaborn as sns |
|
from pandas import DataFrame |
|
from sentence_transformers import SentenceTransformer, CrossEncoder, util |
|
|
|
from transformers import pipeline |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import streamlit as st |
|
import pandas as pd |
|
from rank_bm25 import BM25Okapi |
|
from sklearn.feature_extraction import _stop_words |
|
import string |
|
from tqdm.autonotebook import tqdm |
|
import numpy as np |
|
import docx |
|
from docx.shared import Inches |
|
from docx.shared import Pt |
|
from docx.enum.style import WD_STYLE_TYPE |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
import tempfile |
|
import sqlite3 |
|
import configparser |
|
|
|
|
|
|
|
def bm25_tokenizer(text): |
|
tokenized_doc = [] |
|
for token in text.lower().split(): |
|
token = token.strip(string.punctuation) |
|
|
|
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS: |
|
tokenized_doc.append(token) |
|
return tokenized_doc |
|
|
|
def bm25TokenizeDoc(paraList): |
|
tokenized_corpus = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for passage in tqdm(paraList): |
|
tokenized_corpus.append(bm25_tokenizer(passage)) |
|
|
|
return tokenized_corpus |
|
|
|
def lexical_search(keyword, document_bm25): |
|
config = configparser.ConfigParser() |
|
config.read_file(open('udfPreprocess/paramconfig.cfg')) |
|
top_k = int(config.get('lexical_search','TOP_K')) |
|
bm25_scores = document_bm25.get_scores(bm25_tokenizer(keyword)) |
|
top_n = np.argpartition(bm25_scores, -top_k)[-top_k:] |
|
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n] |
|
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True) |
|
return bm25_hits |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_sentenceTransformer(name): |
|
return SentenceTransformer(name) |
|
|
|
|
|
def semantic_search(keywordlist,paraList): |
|
|
|
|
|
|
|
config = configparser.ConfigParser() |
|
config.read_file(open('udfPreprocess/paramconfig.cfg')) |
|
model_name = config.get('semantic_search','MODEL_NAME') |
|
|
|
bi_encoder = load_sentenceTransformer(model_name) |
|
bi_encoder.max_seq_length = int(config.get('semantic_search','MAX_SEQ_LENGTH')) |
|
top_k = int(config.get('semantic_search','TOP_K')) |
|
document_embeddings = bi_encoder.encode(paraList, convert_to_tensor=True, show_progress_bar=False) |
|
question_embedding = bi_encoder.encode(keywordlist, convert_to_tensor=True) |
|
|
|
hits = util.semantic_search(question_embedding, document_embeddings, top_k=top_k) |
|
|
|
return hits |
|
|
|
def show_results(keywordList): |
|
document = docx.Document() |
|
|
|
section = document.sections[0] |
|
|
|
|
|
footer = section.footer |
|
|
|
|
|
|
|
footer_para = footer.paragraphs[0] |
|
|
|
font_styles = document.styles |
|
font_charstyle = font_styles.add_style('CommentsStyle', WD_STYLE_TYPE.CHARACTER) |
|
font_object = font_charstyle.font |
|
font_object.size = Pt(7) |
|
|
|
footer_para.add_run('''\tPowered by GIZ Data and the Sustainable Development Solution Network hosted at Hugging-Face spaces: https://huggingface.co./spaces/ppsingh/streamlit_dev''', style='CommentsStyle') |
|
document.add_heading('Your Seacrhed for {}'.format(keywordList), level=1) |
|
for keyword in keywordList: |
|
|
|
st.write("Results for Query: {}".format(keyword)) |
|
para = document.add_paragraph().add_run("Results for Query: {}".format(keyword)) |
|
para.font.size = Pt(12) |
|
bm25_hits, hits = search(keyword) |
|
|
|
st.markdown(""" |
|
We will provide with 2 kind of results. The 'lexical search' and the semantic search. |
|
""") |
|
|
|
st.markdown("Top few lexical search (BM25) hits") |
|
document.add_paragraph("Top few lexical search (BM25) hits") |
|
|
|
for hit in bm25_hits[0:5]: |
|
if hit['score'] > 0.00: |
|
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " "))) |
|
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " "))) |
|
|
|
|
|
|
|
|
|
|
|
st.markdown("\n-------------------------\n") |
|
st.markdown("Top few Bi-Encoder Retrieval hits") |
|
document.add_paragraph("\n-------------------------\n") |
|
document.add_paragraph("Top few Bi-Encoder Retrieval hits") |
|
|
|
hits = sorted(hits, key=lambda x: x['score'], reverse=True) |
|
for hit in hits[0:5]: |
|
|
|
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " "))) |
|
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " "))) |